Abstract
The comparative analyses of structure, mechanical properties and fracture surfaces of ultrafine grained Inconel 718 obtained by multiple isothermal forging were performed. The refine-ment of structure down to 80 nm via multiple forging resulted in the strength increase and decrease in room temperature plasticity. After heat treatment this alloy (d=4 m) had gained ultimate tensile strength of about 1520 MPa that is 15% high-er than that of coarse grained alloy. Room temperature fatigue test for 105 cycles revealed the rise of the durability of heat treated condition by 1.7 times as compared to coarse grained alloy.
References (11)
1. R.R. Mulyukov, A.A. Nazarov, R.M. Imaev. RussianPhysics Journal. 51, 492 (2008).
2. Sh. Mukhtarov, V. Valitov and N. Dudova, in: E.A. Loria (Ed.), Superalloys 718, 625, 706, and Various. Derivatives. 507 (2005).
3. M.W. Mahoney, in: E.A. Loria (Ed.), Superalloys 718 - metallurgicaland applications. 391 (1989).
4. V.A. Valitov, O.A. Kaibyshev, Sh.Kh. Mukhtarov, B.P. Bewlay, M.F.X. Gigliotti. Materials Science Forum. 357-359, 417 (2001).
5. Y. Huang, T.G. Langdon. J. Mater. Sci. 42, 421 (2007).
6. Sh.Kh. Mukhtarov. Effect of grain size on the Superplastic behaviorof a nanostructured nickel-based superalloy. // Mater. Sci.Forum. 633-634, 569 (2010).
7. http://www.specialmetals.com/documents/Inconel%20alloy%20718.pdf.
8. Sh.Kh. Mukhtarov, V. Valitov, M.F.X. Gigliotti, PR Subramanian, J.S. Marte, N. Dudova. Mater. Sci. Forum. 584-586, 458 (2008).
9. M.Kh. Rabinovich and M.V. Markushev. Journal of MaterialsScience. 31, 4997 (1996).
10. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang.Acta Materialia. 51, 387 (2003).
11. L.M. Bernshtein, A.P. Matevosian, V.S. Sandler. Deformationand properties of aerospace material technique - Moscow.Metallurgiya. (1982), 376 p. (in Russian) [Деформация и свой-ства материалов для авиационной и космической техники./ Л.М. Бернштейн, А.П. Матевосьян, В.С. Сандлер - М.:Металлургия, 1982, 376 с.].