Creating high surface in the metal mesh carrier

N.N. Gryzunova, A.A. Vikarchuk, M.R. Shafeev show affiliations and emails
Accepted: 20 October 2014
This paper is written in Russian
Citation: N.N. Gryzunova, A.A. Vikarchuk, M.R. Shafeev. Creating high surface in the metal mesh carrier. Lett. Mater., 2015, 5(2) 211-214


Metal-based catalysts are widely used in chemical and petroleum industries. Typically, active components as noble metals are supported on the porous ceramic or oxide carrier. The main disadvantage of the existing technology is the weak adhesion of the metal and carrier, low mechanical strength, bad heat transfer and bad contact of the catalyst with gas. Currently, perspective catalysts are based on noble metals and their oxides supported and fixed on the mesh carriers. They are more durable, have high thermal conductivity and provides a good gas contact with the catalyst. However, metal mesh carriers have low surface area in comparison with the porous ceramics, so developing methods to increase the specific surface of the metal-based catalysts is required. The work is devoted to methods of creation high surface of the metal mesh catalyst carrier. Shown that there are several ways to increase the specific surface: 1) direct heat treatment of stainless steel meshin oxygen-containing environment; 2) deposition the barrier coating and its further heat treatment in air atmosphere; 3) direct electrodeposition of nickel coating with high surface area on the stainless steel mesh. Also shown that variation of the annealing condition sallow to obtain a high surface nanowhiskers structures or connected by channels micropores mesh carrier and to form a special surface phase composition, including obtaining iron oxides and (or) chromium. Such carriers with iron oxide or chromium oxide high surface area in themselves can be used as catalysts in the production of ammonia, dehydrogenation of olefin, alkyl aromatic and alkylpyridine hydrocarbon set al.

References (7)

1. I. Yuranov, N. Dunand, L. Kiwi-Minsker, A. Renken. Applied Catalysis B: Environmental. 36, 183-185 (2002). Crossref
2. J. Sehesteda, J. A. P. Geltena. Journal of Catalysis. 223, 432-436 (2004).
3. Yasnikov I. S., Vikarchuk A. A., Denisova D. A., Gryzunova N. N., Tsybuskina I. I. Technical Physics. The Russian Journal of Applied Physics. 77 (10), 81-84 (2007). (in Russian) [И. С. Ясников, А. А. Викарчук, Д. А. Денисова, Н. Н. Грызунова, И. И. Цыбускина. Журнал технической физики. 77 (10), 81-84 (2007).].
4. A. A. Vikarchuk, A. E. Romanov. Fundamental Problems of Modern Materials Science. 11 (1), 87-89 (2014). (in Russian) [А. А. Викарчук, А. Е. Романов. Фундаментальные проблемы современного материаловедения. 11 (1), 87-89 (2014).].
5. A. A. Vikarchuk, N. N. Gryzunova, М. V. Dorogov. Materials Science. 8, 48-53 (2011). (in Russian) [А. А. Викарчук, Н. Н. Грызунова, М. В. Дорогов. Материаловедение. 8, 48-53 (2011).].
6. A. A. Vikarchuk, E. Yu. Vlasenkova, N. N. Gryzunova. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences. 6, 44-49 (2008) (in Russian) [А. А. Викарчук, Н. Н. Грызунова, Е. Ю. Власенкова. Известия Самарского научного центра РАН. 6, 44-49 (2008).].
7. A. Vikarchuk, N. Gryzunova, O. Dovzhenko, M. Dorogov, A. Romanov. Adv. Mater. Res. 1013, 205-209 (2014).

Cited by (1)

N. Antonova, A. Kameneva. Materials Today: Proceedings. 19, 1856 (2019). Crossref

Similar papers