Surface hardening of an Al-Si-Cu-Ni-Mg aluminum alloy by friction stir processing and T6 heat treatment

G.R. Khalikova ORCID logo , G.R. Zakirova, A.I. Farkhutdinov, E.A. Korznikova, V.G. Trifonov show affiliations and emails
Received 28 April 2022; Accepted 29 August 2022;
Citation: G.R. Khalikova, G.R. Zakirova, A.I. Farkhutdinov, E.A. Korznikova, V.G. Trifonov. Surface hardening of an Al-Si-Cu-Ni-Mg aluminum alloy by friction stir processing and T6 heat treatment. Lett. Mater., 2022, 12(3) 255-260


Friction stir processing mode (ω = 2000 rpm, ν = 8 mm/min) and hardening T6 heat treatment were developed, which makes it possible to achieve the formation of a monolithic defect-free structure in the AK12D (Al–12.8Si–1.67Cu–1.03Ni–0.84Mg–0.33Mn–0.23Co–0.24Fe) alloy with a high level of mechanical properties.Friction stir processing (FSP) and standard hardening T6 heat treatment were applied for local surface hardening of the АК12D aluminum (Al-12.8Si-1.67Cu-1.03Ni-0.84Mg-0.33Mn-0.23Co-0.24Fe) alloy plates obtained by hot-compression at elevated temperature. FSP was carried out by introducing a pin into the bulk of the material, followed by its movement along the surface at a traverse speed of 8 and 16 mm / min, accompanied by rotation of the pin at a speed of 2000 rpm. The effect of FSP parameters and T6 treatment on structure and hardness were investigated. It was established that FSP at 2000 rpm and 8 mm / min speed resulted in the formation of a monolithic and defect-free processing zone. The FSP and T6 treatment led to fragmentation of the primary Si and intermetallic phases and partial dissolution of intermetallic phases in the α-Al solid solution followed by decomposition and the formation of dispersed precipitates. The formation of a quasi-equiaxed fine-grained structure was observed after FSP and T6 heat treatment in the stir zone. The measured Brinell hardness demonstrated an average value of 128 HB after treatment versus 103 HB in the initial state. The work reveals the features of the local surface structure refinement allowing to figure out approaches to the design of constructions with enhanced properties.

References (28)

1. G. R. Khalikova, G. F. Korznikova, V. G. Trifonov. Lett. Mater. 7, 3 (2017). (in Russian) [Г. Р. Халикова, Г. Ф. Корзникова, В. Г. Трифонов. Письма о материалах. 7, 3 (2017).]. Crossref
2. M. Myshlyaev, S. Mironov, G. Korznikova, T. Konkova, E. Korznikova, A. Aletdinov, G. Khalikova, G. Raab, S. L. Semiatin. J. Alloys Compd. 898, 162949 (2022). Crossref
3. I. Hutchings, Ph. Shipway. Tribology: friction and wear of engineering materials. Second Edition. Oxford, United Kingdom, Butterworth-Heinemann (2017) 237 p.
4. R. R. Mulyukov, G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, S. N. Sergeev, R. U. Shayachmetov, G. R. Khalikova, E. A. Korznikova. Acta Mech. 232, 1815 (2021). Crossref
5. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D. P. Field, J. D. Robson, A. Deschamps, P. Withers. J. Prog. Mater. Sci. 117, 100752 (2021). Crossref
6. A. P. Zykova, S. Yu. Tarasov, A. V. Chumaevskiy, E. A. Kolubaev. Metals. 10 (6), 772 (2020). Crossref
7. H. Sun, S. Yang, D. Jin. Trans. Indian Inst. Met. 71, 985 (2018). Crossref
8. Z. Y. Ma, S. R. Sharma, R. S. Mishra. Metall. Mater. Trans. A. 37, 3323 (2006). Crossref
9. P. Ma, Y. D. Jia, K. G. Prashanth, Z. S. Yu, C. G. Li, J. Zhao, S. L. Yang, L. X. Huang. J. Mater. Res. 32 (11), 2210 (2017). Crossref
10. J. Abboud, J. Mazumder. Sci. Rep. 10, 12090 (2020). Crossref
11. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, W. H. Bingel. Metall. Mater. Trans. A. 29, 1955 (1998). Crossref
12. W. D. Lockwood, B. Tomaz, A. P. Reynolds. Mater. Sci. Eng. A. 323, 348 (2002). Crossref
13. M. Cabibbo, H. J. McQueen, E. Evangelista, S. Spigarelli, M. Di Paola, A. Falchero. Mater. Sci. Eng. A. 460 - 461, 86 (2007). Crossref
14. K. Elangovan, V. Balasubramanian. Mater. Charact. 59, 1168 (2008). Crossref
15. K. V. Jata, K. K. Sankaran, J. J. Ruschau. Metall. Mater. Trans. A. 31, 2181 (2000). Crossref
16. A. Sullivan, J. D. Robson. Mater. Sci. Eng. A. 478, 351 (2008). Crossref
17. N. A. Belov. Phase composition of industrial and advanced aluminum alloys: monograph. Moscow, MISIS (2010) 511p.
18. G. R. Cui, Z. Y. Ma, S. X. Li. Scripta Mater. 58, 1082 (2008). Crossref
19. R. S. Mishra, Z. Y. Ma. Mater. Sci. Eng. R. 50, 1 (2005). Crossref
20. Y. S. Sato, H. Kokawa, M. Enomoto, Sh. Jogan. Metall. Mater. Trans. A. 30, 2429 (1999). Crossref
21. N. Murugan, B. Ashok Kumar. Mater. Des. 51, 998 (2013). Crossref
22. N. Sharma, Z. A. Khan, A. N. Siddiquee. Trans. Nonferrous Met. Soc. China. 27, 2113 (2017). Crossref
23. Q. Qin, H. Zhao, J. Li, Y. Zhang, X. Su. Trans. Nonferrous Met. Soc. China. 30, 2355 (2020). Crossref
24. T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S. W. Chung, Y. Takigawa, K. Higashi. Mater. Sci. Eng. A. 456 (1-2), 344 (2007). Crossref
25. T. Kalashnikova, A. Chumaevskii, K. Kalashnikov, S. Fortuna, E. Kolubaev, S. Tarasov. Metals. 10, 806 (2020). Crossref
26. X.-G. Chen, M. da Silva, P. Gougeon, L. St-Georges. Mater. Sci. Eng. A. 518 (1-2), 174 (2009). Crossref
27. W. Gan, K. Okamoto, S. Hirano, K. Chung, C. Kim, R. H. Wagoner. J. Eng. Mater. Technol. 130 (3), 031007 (2008). Crossref
28. P. Maji, R. K. Nath, R. Karmakar, P. Paul, R. K. Bhogendro Meitei, S. K. Ghosh. CIRP J. Manuf. Sci. Technol. 35, 96 (2021). Crossref

Similar papers


1. Russian Science Foundation - 22-29-01318
2. Ministry of Science and Higher Education of the Russian Federation within the framework of the state task of the USATU of the youth research laboratory «Metals and Alloys under Extreme Impacts» - 075-03-2022-318/1