Microstructure and mechanical behavior at elevated temperatures of a novel nickel base superalloy heavily alloyed with γ' forming and substitution elements

R.I. Zainullin, A.A. Ganeev ORCID logo , R.V. Shakhov, A.V. Logunov, S.K. Mukhtarov ORCID logo , V.M. Imayev show affiliations and emails
Received 01 November 2019; Accepted 07 November 2019;
Citation: R.I. Zainullin, A.A. Ganeev, R.V. Shakhov, A.V. Logunov, S.K. Mukhtarov, V.M. Imayev. Microstructure and mechanical behavior at elevated temperatures of a novel nickel base superalloy heavily alloyed with γ' forming and substitution elements. Lett. Mater., 2019, 9(4) 490-493
BibTex   https://doi.org/10.22226/2410-3535-2019-4-490-493

Abstract

Зависимости истинного напряжения от истинной деформации никелевого сплава, полученные в результате испытаний на сжатие и микроструктура (BSE) выделений γ′ фазы с мелкими карбидами.A novel nickel base superalloy heavily alloyed with γ' forming and substitution elements, particularly with rhenium and tungsten, has been proposed in the present work as a potential die material for die forging of the most hard-to-deform nickel base superalloys. The superalloy composition is Ni-13(Al, Ti, Nb, Ta)-27(Cr, Co, Mo, W, Re, Si, C, B) (wt.%). The superalloy ingot was manufactured by vacuum induction melting. Microstructure examination showed that the as-cast condition was characterized by a coarse grained dendritic structure consisted of coarse γ grains containing γ' precipitates with a size 0.3 –1 μm and primary γ' particles with a size 5 –100 μm. A small amount of carbides and topologically close packed (TCP) phases was also detected. The microstructure examination suggests that the general solidification pathway was L → γ → γ', as it is in nickel base superalloys. At the same time, the primary γ' particles were probably formed via the peritectic reaction Lnoneq. + γ → γ', where Lnoneq. is the nonequilibrium liquid, which was retained at the peritectic temperature. The superalloy was subjected to heat treatment including solid solution treatment and ageing. The heat treatment led to coagulation of the primary γ' phase and to a slight decrease in the volume fractions of carbides and TCP phases. The heat treated condition was used to prepare samples for compression tests, which were performed at 900 –1200°C up to the true strain e = 0.1. The yield strength of the novel superalloy was generally appreciably higher as compared with those of known nickel base superalloys and alloys based on the Ni3Al intermetallic phase.

References (12)

1. R. C. Reed. The superalloys: Fundamentals and Applications. Cambridge University Press (2006) 372 p. Crossref
2. H. Zhang, K. Zhang, S. Jiang, H. Zhou, C. Zhao, X. Yang. J. Alloys Compd. 623, 374 (2015). Crossref
3. Sh. Kh. Mukhtarov, V. M. Imayev, A. V. Logunov, Yu. N. Shmotin, A. M. Mikhailov, R. A. Gaisin, R. V. Shakhov, A. A. Ganeev, R. M. Imayev. Mater. Sci. & Technol. 35 (13), 1605 (2019). Crossref
4. V. M. Imayev, S. K. Mukhtarov, A. V. Logunov, A. A. Ganeev, R. V. Shakhov, R. M. Imayev. Letters on Materials. 9 (2), 249 (2019) (in Russian). [В.М. Имаев, Ш.Х. Мухтаров, А.В. Логунов, А.А. Ганеев, Р.В. Шахов, Р.М. Имаев. Письма о материалах. 9(2), 249 (2019).]. Crossref
5. A. A. Ganeev, V. A. Valitov, F. Z. Utyashev, V. M. Imayev. The Physics of Metals and Metallography. 120 (4), 442 (2019). (in Russian) [А.А. Ганеев, В.А. Валитов, Ф.З. Утяшев, В.М. Имаев. Физика металлов и металловедение. 120 (4), 442 (2019).]. Crossref
6. E. N. Kablov, O. G. Ospennikova, O. A. Bazyleva. Vestnik MGTU im N. E. Baumana. Ser. “Mashinostroenie”, 13, (2011). (in Russian) [Е.Н. Каблов, О.Г. Оспенникова, О.А. Базылева. Вестник МГТУ им. Н.Э. Баумана. Сер. «Машиностроение». 13, (2011).].
7. K. B. Povarova, N. K. Kazanskaya, V. P. Buntushkin, V. G. Kostogryz, V. G. Bakharev, V. I. Mironov, O. A. Bazyleva, A. A. Drozdov, I. O. Bannykh. Russian metallurgy (Metally). 3, 269 (2003).
8. J. Schramm. Z. Metallkd. 33, 347 (1941).
9. I. Ansara, N. Dupin, H. L. Lukas, B. Sundman. J. Alloys Compd. 247, 20 (1997). Crossref
10. E. B. Chabina, N. V. Petrushin, M. B. Bronfin, L. A. Dyachkova. Russian metallurgy (Metally). 3, 85 (1994). (in Russian) [Е.Б. Чабина, Н.В. Петрушин, М.Б. Бронфин, Л.А. Дьячкова. Металлы. 3, 85 (1994).].
11. E. N. Kablov, O. G. Ospennikova, O. A. Bazyleva. Dvigatel. 4 (70), 22 (2010). (in Russian) [Е.Н. Каблов, О.Г. Оспенникова, О.А. Базылева. Двигатель. 4 (70), 22 (2010).].
12. O. G. Ospennikova. Razrabotka nauchnykh osnov sozdaniya novogo pokoleniya liteinykh jaroprochnykh nanostrukturirovannykh nikelevykh splavov ponijennoi plotnosti s trebuemym kompleksom mekhanicheskikh svoistv: Dissertacija na soiskanie stepeni doktora tehnicheskih nauk. Moskva (2018) 321 p. (in Russian). [О. Г. Оспенникова. Разработка научных основ создания нового поколения литейных жаропрочных наноструктурированных никелевых сплавов пониженной плотности с требуемым комплексом механических свойств: дисс. докт. техн. наук. Москва (2018) 321 c.].

Similar papers

Funding

1. Russian Science Foundation - 18-19-00594