Microstructure and mechanical properties of a heat resistant nickel base superalloy heavily alloyed with substitution elements

V.M. Imayev, S.K. Mukhtarov ORCID logo , A.V. Logunov, A.A. Ganeev ORCID logo , R.V. Shakhov ORCID logo , R.I. Zainullin, N.Y. Parkhimovich, R.M. Imayev show affiliations and emails
Received: 02 December 2020; Revised: 23 December 2020; Accepted: 29 December 2020
This paper is written in Russian
Citation: V.M. Imayev, S.K. Mukhtarov, A.V. Logunov, A.A. Ganeev, R.V. Shakhov, R.I. Zainullin, N.Y. Parkhimovich, R.M. Imayev. Microstructure and mechanical properties of a heat resistant nickel base superalloy heavily alloyed with substitution elements. Lett. Mater., 2021, 11(1) 61-66
BibTex   https://doi.org/10.22226/2410-3535-2021-1-61-66


Ni-14(Al, Ta)-30.7(Co, Cr, W, Hf) (wt.%) superalloy microstructure.The present work is devoted to a study of the microstructure and mechanical properties of a new nickel base superalloy Ni-14(Al, Ta)-30.7(Co, Cr, W, Hf) (wt.%) intended for use as a die material and probably a structural material for gas turbine engines (GTEs). The superalloy contains about 70 vol.% of the γ'(Ni3Al) phase and about 3 vol.% of carbides and topologically close-packed (TCP) phases. Before hot forging, the superalloy workpiece was subjected to homogenization annealing followed by slow furnace cooling that led to coarsening of the γ' phase. The obtained microstructural condition was used to evaluate the partitioning coefficients kγ / γ' for alloying elements by energy dispersive X-Ray (EDS) analysis. EDS analysis was also performed for TCP phases. It was revealed that the TCP phases contained a higher amount of Ta, W, and Hf. Compression tests carried out for the cast and heat treated condition showed that the new superalloy had the yield strength values at 1100 –1200°C comparable with those obtained for the VKNA superalloys based on the γ' phase; at 1000°C the yield strength was found to be much higher than that of the VKNA superalloys. In the wrought conditions, the ductility and strength properties at 20 – 750°C were appreciably higher than those in the cast and heat treated condition. At the same time, the studied microstructural conditions of the superalloy showed a similar creep rupture life at 650 – 850°C. The obtained mechanical properties show that the new superalloy can be considered as an inexpensive structural material for GTEs.

References (14)

1. R. C. Reed. The superalloys: Fundamentals and Applications. Cambridge University Press (2006) 372 p. Crossref
2. B. Geddes, H. Leon, X. Huang. Superalloys: Alloying and Performance. ASM International Materials Park (2010) 176 p. Crossref
3. K. Sahithya, I. Balasundar, P. Pant, T. Raghu. J. Alloys Compd. 821, 153455 (2020). Crossref
4. O. A. Kaibyshev, F. Z. Utyashev. Superplasticity: Microstructural Refinement and Superplastic Roll Forming. Futurepast (2005) 386 p.
5. K. B. Povarova, O. A. Bazyleva, A. A. Drozdov, N. A. Alad’ev, M. A. Samsonova. Russian Metallurgy (Metally). 11, 975 (2012). Crossref
6. E. N. Kablov, O. G. Ospennikova, O. A. Bazyleva. Vestnik MGTU im N. E. Baumana. Ser. Mashinostroenie SP2, 13 (2011). (in Russian) [E. Н. Каблов, O. Г. Оспенникова, O. A. Базылева. Вестник МГТУ им. Н. Э. Баумана. Сер. Машиностроение SP2, 13 (2011).].
7. R. I. Zainullin, A. A. Ganeev, R. V. Shakhov, A. V. Logunov, Sh. Kh. Mukhtarov, V. M. Imayev. Letters on Materials. 9 (4), 490 (2019). Crossref
8. F. R. Larson, J. Miller. Trans. ASME. 74, 765 (1952).
9. L. S. Mataveli, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, G. Cailletaud, L. Marcin. Mater. High Temp. 33, 361 (2016). Crossref
10. J. Radavich, D. Furrer. In: Superalloys 2004 (Ed. by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, S. Walston). TMS, Warrendale PA, USA (2004) pp. 381- 390. Crossref
11. O. G. Ospennikova. Razrabotka nauchnykh osnov sozdaniya novogo pokoleniya liteinykh jaroprochnykh nanostrukturirovannykh nikelevykh splavov ponijennoi plotnosti s trebuemym kompleksom mekhanicheskikh svoistv: Dissertacija na soiskanie stepeni doktora tehnicheskih nauk. Moscow (2018) 321 p. (in Russian) [О. Г. Оспенникова. Разработка научных основ создания нового поколения литейных жаропрочных наноструктурированных никелевых сплавов пониженной плотности с требуемым комплексом механических свойств: дисс. докт. техн. наук. Москва (2018) 321 p.].
12. L. Zheng, G. Schmitz, Y. Meng. Critical Reviews in Solid State and Materials Sciences. 37, 181 (2012). Crossref
13. G. A. Rao, M. Kumar, M. Srinivas, D. S. Sarma. Materials Science and Engineering A. 355, 114 (2003). Crossref
14. A. R. Braun, J. F. Radavich, C. P. Stinner. Superalloys 718 (Ed. by E. A. Loria). TMS, Warrendale PA, USA (1989) pp. 623 - 629. Crossref

Similar papers


1. Russian Science Foundation - 18-19-00594