Long-term strength and creep resistance of a polycrystalline Re-containing nickel-based superalloy

S.K. Mukhtarov ORCID logo , V.M. Imayev, R.V. Shakhov ORCID logo , A.A. Ganeev show affiliations and emails
Accepted  02 August 2021
This paper is written in Russian
Citation: S.K. Mukhtarov, V.M. Imayev, R.V. Shakhov, A.A. Ganeev. Long-term strength and creep resistance of a polycrystalline Re-containing nickel-based superalloy. Lett. Mater., 2021, 11(3) 261-266
BibTex   https://doi.org/10.22226/2410-3535-2021-3-261-266

Abstract

The microstructural images of superalloy subjected to different solid solution treatment obtained near the fracture zones of samples after creep tests at 850°C / 450 MPa.The work was devoted to the study of the long-term strength and creep resistance of the recently developed heat resistant nickel-based superalloy SDZhS-15 intended for manufacturing of discs for gas turbine engines. The as-cast alloy was subjected to homogenization heat treatment, hot forging at subsolvus temperatures with intermediate annealing, solution treatment at various temperatures and aging or only to aging. A predominantly fine-grained structure was obtained in the workpieces after forging. It was revealed that solution treatment at T > Ts − 50, where Ts is the solvus temperature of the γ'-phase, led to a decrease in the volume fraction of the primary γ'-phase and an increase in the volume fraction of the γ' precipitates together with a significant growth of γ grains (up to d > 50 μm). Solution treatment at Т = Ts − 50 allowed maintaining a relatively fine-grained structure (dγ =10 – 20 μm) and ensured the precipitation of the secondary γ'-phase with a size of about 0.1 μm upon cooling in air. Three microstructure conditions were obtained, for which long-term strength and creep resistance tests were performed in the range of temperatures 650 – 850°C and stresses 400 –1200 MPa. The highest values of the long-term strength were achieved for a relatively fine-grained condition obtained after solution treatment at Ts − 50 and aging. To evaluate the service life of the superalloy, the methodology based on the calculation of the Larson-Miller parameter was used. It was shown that the long-term strength (creep resistance) of the SDZhS-15 alloy in the optimal condition was higher as compared to the industrial disc nickel-based superalloys EP741NP and Udimet 720. Microstructure examination of the creep tested samples did not result in significant microstructure changes and especially in the formation of topologically close-packed phases. After creep tests, microcracks were observed along the grain / interphase boundaries, which apparently resulted from the development of boundary diffusion and sliding.

References (17)

1. R. C. Reed. The superalloys: Fundamentals and Applications. Cambridge University Press (2006) 372 p. Crossref
2. Sh. Kh. Mukhtarov, V. M. Imayev, A. V. Logunov, Yu. N. Shmotin, A. M. Mikhailov, R. A. Gaisin, R. V. Shakhov, A. A. Ganeev, R. M. Imayev. Mater. Sci. Technol. 35, 1605 (2019). Crossref
3. V. M. Imayev, S. K. Mukhtarov, A. V. Logunov, A. A. Ganeev, R. V. Shakhov, R. M. Imayev. Letters on Materials. 9 (2), 249 (2019). (in Russian) [В. М. Имаев, Ш. Х. Мухтаров, А. В. Логунов, А. А. Ганеев, Р. В. Шахов, Р. М. Имаев. Письма о материалах. 9 (2), 249 (2019).]. Crossref
4. L. Thébaud, P. Villechaise, J. Cormier, C. Crozet, A. Devaux, D. Béchet, J.-M. Franchet, A. Organista, F. Hamon. Metals. 5, 2236 (2015). Crossref
5. C. Xu, F. Liu, L. Huang, L. Jiang. Metals. 8, 4 (2018). Crossref
6. N. Mrozowski, G. Hénaff, F. Hamon, A.-L. Rouffié, J.-M. Franchet, J. Cormier, P. Villechaise. Metals. 10, 426 (2020). Crossref
7. E. V. Filonova, M. M. Bakradze, A. Ya. Kochubei, N. L. Babelin. Aviation materials and technologies. 3, 10 (2014). (in Russian) [Е. В. Филонова, М. М. Бакрадзе, А. Я. Кочубей, Н. Л. Вавилин. Авиационные материалы и технологии. 3, 10 (2014).]. Crossref
8. Patent RF № 2653386 C1, 05.08.2018. (in Russian) [Патент РФ № 2653386 C1, 05.08.2018.].
9. B. S. Lomberg, S. V. Hovsepyan, M. M. Bakradze. Aviation materials and technologies. 2, 3 (2010). (in Russian) [Б. С. Ломберг, С. В. Овсепян, М. М. Бакрадзе. Авиационные материалы и технологии. 2, 3 (2010).].
10. T. Tian, C. Ge, X. Li, Z. Hao, S. Peng, C. Jia. Metals. 10, 454 (2020). Crossref
11. F. R. Larson, J. Miller. Trans. ASME. 74, 765 (1952).
12. L. S. Mataveli, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, G. Cailletaud, L. Marcin. Mater. High Temp. 33, 361 (2016). Crossref
13. J. Radavich, D. Furrer. Superalloys 2004 (ed. by K. A. Green). TMS, Warrendale, PA, USA (2004) pp. 381- 390. Crossref
14. Y. L. Hu, Y. L. Li, S. Y. Zhang, X. Lin, Z. H. Wang, W. D. Huang. Mater. Sci. Eng. A. 772, 138711 (2020). Crossref
15. D. Bürger, A. B. Parsa, M. Ramsperger, C. Körner, G. Eggeler. Mater. Sci. Eng. A. 762, 138098 (2019). Crossref
16. A. A. Ganeev, V. A. Valitov, F. Z. Utyashev, V. M. Imaev. Physics of Metals and Metallography. 120 (4), 410 (2019). Crossref
17. K. S. Mukhtarova, R. V. Shakhov, A. A. Ganeev, S. K. Mukhtarov, A. V. Logunov, V. M. Imayev. IOP Conf. Series: Mater. Sci. Eng. 1008, 012010 (2020). Crossref

Similar papers

Funding

1. State Assignment of the Institute for Metals Superplasticity Problems of the Russian Academy of Sciences - AAAA-A17-117041310215-4