Effect of electrolytic hydrogen saturation on deformation mechanisms of Fe-17Cr-13Ni-3Mo-0.01C austenitic stainless steel during cold rolling

E.V. Melnikov ORCID logo , M.Y. Panchenko ORCID logo , K.A. Reunova, E.G. Astafurova show affiliations and emails
Received 11 May 2021; Accepted 21 June 2021;
This paper is written in Russian
Citation: E.V. Melnikov, M.Y. Panchenko, K.A. Reunova, E.G. Astafurova. Effect of electrolytic hydrogen saturation on deformation mechanisms of Fe-17Cr-13Ni-3Mo-0.01C austenitic stainless steel during cold rolling. Lett. Mater., 2021, 11(3) 285-290
BibTex   https://doi.org/10.22226/2410-3535-2021-3-285-290

Abstract

Cold rolling of Fe-17Cr-13Ni-3Mo-0.01C austenitic stainless steel leads to the formation of a fragmented structure with a high density of crystal structure defects. The main deformation mechanism during rolling is dislocation slip, which is accompanied by the development of mechanical twinning as an additional mechanism contributing to structure fragmentation. Saturation with hydrogen promotes more active development of twinning and the occurrence of the γ → ε phase transformation, and an increase in the current density upon saturation of the samples with hydrogen before rolling and a decrease in the deformation temperature is accompanied by an increase in the density of twin boundaries and the density of dislocations.In this work, we investigated the effect of the current density during electrolytic hydrogen-charging before deformation on the mechanisms of plastic deformation of stable austenitic stainless steel Fe-17Cr-13Ni-3Mo-0.01C during rolling. Using transmission electron microscopy and backscattered electron diffraction, it has been shown that plastic deformation by rolling at room temperature with 25 % reduction causes the formation of a high density of crystal lattice defects in the initially coarse-grained steel samples. The main deformation mechanism during rolling is dislocation slip, which is accompanied by mechanical twinning as an additional mechanism contributing the structure fragmentation. Regardless of the mode of preliminary hydrogen-charging, it promotes more active development of twinning. The higher the current density during hydrogen pre-charging, the higher the density of twin boundaries and dislocation density in the steel structure during rolling. After hydrogen-charging at a current density of 200 mA / cm2, the γ → ε transformation is also realized upon deformation. At the same time, an increase in the current density upon hydrogen pre-charging from 10 to 200 mA / cm2 does not contribute to a significant increase in the concentration of hydrogen adsorbed by the material (0.0017 – 0.0018 mass.%), which, together with microstructural studies, indicates a different distribution of hydrogen in the samples immediately before deformation and the important role of the hydrogen concentration gradient on the deformation mechanisms of the steel during subsequent rolling. With a decrease in the deformation temperature (due to the cooling of the samples before rolling to the temperature of liquid nitrogen), hydrogen-charging also causes an increase in the linear density of twin boundaries and the formation of ε-martensite, but these effects are more significant compared to room-temperature deformation. The data obtained indicate that at similar values of the concentration of adsorbed hydrogen in the structure of steels, the saturation mode affects the deformation mechanism and phase transformations in austenitic steel.

References (24)

1. B. N. Arzamasov, T. V. Soloviev, S. A. Gerasimov et al. Reference book on constructional materials. Moscow, MGTU im. N. E. Bauman (2006) 640 p. (in Russian) [Б. Н. Арзамасов, Т. В. Соловьев, С. А. Герасимов и др. Справочник по конструкционным материалам. Москва, МГТУ им. Н. Э. Баумана (2006) 640 с.].
2. A. P. Shlyamnev et al. Corrosion-resistant, heat-resistant and high-strength steels and alloys: a reference book. Moscow, Intermet Engineering (2000) 232 p. (in Russian) [А. П. Шлямнев и др. Коррозионностойкие, жаростойкие и высокопрочные стали и сплавы: справочник. Москва, Интермет Инжиниринг (2000) 232 с.].
3. S. L. Chawla, R. K. Gupta. Materials Selection for Corrosion Control. ASM International Materials Park, OH (1997) 508 p.
4. K. H. Lo, C. H. Shek, J. K. L. Lai. Mater. Sci. and Eng.: R. 65 (4-6), 39 (2009). Crossref
5. A. F. Padihla, R. L. Plaut, P. R. Rios. ISIJ International. 43 (2), 135 (2003). Crossref
6. G. Korznikova, S. Mironov, T. Konkova et al. Metall. Mater. Trans. A. 49, 6325 (2018). Crossref
7. M. El-Tahawy, G. Jenő, H. Yi, et al. Mater. Sci. Forum. 885, 13 (2017). Crossref
8. I. Yu. Litovchenko, A. N. Tyumentsev, E. P. Naiden. Phys. Meso. 9 (1), 31 (2014). (in Russian) [И. Ю. Литовченко, А. Н. Тюменцев, Е. П. Найден. Физическая мезомеханика. 9 (1), 137 (2014).]. Crossref
9. I. Yu. Litovchenko, N. V. Shevchenko, A. N. Tyumentsev, E. P. Naiden. Phys. Meso. Special. 9, 137 (2006). (in Russian) [И. Ю. Литовченко, Н. В. Шевченко, А. Н. Тюменцев, Е. П. Найден. Физическая мезомеханика. Спец. выпуск 9, 137 (2006).]. Crossref
10. J. W. Christian, S. Mahajan. Prog. Mater. Sci. 39, 1 (1995). Crossref
11. S. V. Astafurov, G. G. Maier, E. V. Melnikov, V. A. Moskvina, M. Yu. Panchenko, E. G. Astafurova. Mater. Sci. and Eng. A. 756, 365 (2019). Crossref
12. L. Zhang, Zh. Li, J. Zheng, et al. Int. J. of Hydrogen Ener. 38, 8208 (2013). Crossref
13. M. Hatano, M. Fujinami, K. Arai, H. Fujii, M. Nagumo. Acta Mater. 67, 342 (2014). Crossref
14. A. E. Pontini, J. D. Hermida. Scripta Mater. 37 (11), 1831 (1997). Crossref
15. E. G. Astafurova, G. G. Maier, E. V. Melnikov, et al. Phys. Meso. 21, 263 (2018). Crossref
16. L. Zhang, M. Imade, B. An et al. ISIJ International. 52 (2), 240 (2012). Crossref
17. S. Sigiyama, H. Ohkubo, M. Takenaka, et al. J. of Nuclear Mater. 283 - 287, 864 (2000). Crossref
18. Y. Mine, Z. Horita, Y. Murakam. Acta Mater. 57 (10), 2993 (2009). Crossref
19. E. Melnikov, G. Maier, V. Moskvina, E. Astafurova. AIP Conf. Proc. 1909, 020136 (2017). Crossref
20. L. M. Utevsky. Diffraction electron microscopy in metal science. Moscow, Metallurgiya (1973) 584 p. (in Russian) [Л. М. Утевский. Дифракционная электронная микроскопия в металловедении. Москва, Металлургия (1973) 584 с.].
21. M. Koyama, E. Akiyama, T. Sawaguchi, et. al. Corrosion Sci. 75, 345 (2013). Crossref
22. E. G. Astafurova, I. V. Kireeva, Yu. I. Chumlyakov, H. J. Maier, H. Sehitoglu. Int. J. Mat. Res. 98 (2), 144 (2007). Crossref
23. V. A. Polyanskiy, A. K. Belyaev, EL. Alekseeva, A. M. Polyanskiy, D. A. Tretyakov, Yu. A. Yakovlev. Contin. Mechan. Thermodyn. 31, 1961 (2019). Crossref
24. Z. W. Wang, Y. B. Wang, X. Z. Liao, Y. H. Zhao. Scr. Mater. 60 (1), 52 (2009). Crossref

Similar papers

Funding

1. The work was carried out within the framework of the state assignment of the ISPMS SB RAS - topic number FWRW-2019-0030