High-pressure phases in the Al86Ni6Gd4Tb2Er2 alloy

S.G. Menshikova, V.V. Brazhkin, V.I. Lad’yanov, B.E. Pushkarev, A.A. Suslov show affiliations and emails
Received 08 July 2020; Accepted 07 September 2020;
This paper is written in Russian
Citation: S.G. Menshikova, V.V. Brazhkin, V.I. Lad’yanov, B.E. Pushkarev, A.A. Suslov. High-pressure phases in the Al86Ni6Gd4Tb2Er2 alloy. Lett. Mater., 2020, 10(4) 433-438
BibTex   https://doi.org/10.22226/2410-3535-2020-4-433-438

Abstract

The solidification of the Al86Ni6Gd4Tb2Er2 liquid alloy under pressure of  3 and 7 GPa leads to a change in its phase composition. At a pressure of 7 GPa, metastable crystalline phases were obtained.The combination of various extreme influences (ultrahigh pressures, torsion under pressure and equal channel angular pressing, ultralow and ultrahigh temperatures, strong electric and magnetic fields, ultrafast cooling from the melt) allows us to significantly expand the region of metastable states and to obtain materials with different structural hierarchy: amorphous, quasi- and nanocrystalline. The key extreme parameter in the work is high pressure. High pressure phases are thermodynamically stable at high pressures. The methods of X-ray diffraction analysis and electron microscopy were used to study the structure, elemental, and phase composition of the hypereutectic Al86Ni6Gd4Tb2Er2 (hereinafter, at.%) alloy during solidification of the melt at a rate of 1000 deg / s under ultrahigh pressure of 3 and 7 GPa. Samples for research were obtained in a high-pressure chamber of the toroid type. The alloy was heated and melted by passing alternating current through the sample. The structure of all the obtained samples is homogeneous, dense, without shrinkage shells. Solidification of the melt under pressure of 3 and 7 GPa leads to a change in the phase composition of the alloy, the alloy remains hypereutectic. At a pressure of 7 GPa, metastable crystalline phases were obtained. The combination of high solidification rate and mechanical compaction made it possible to obtain alloys with a crushed structure and high density. The average microhardness of samples obtained under pressure is ~4 times higher than the microhardness of the initial sample due to solid-solution and dispersion hardening. Despite the fact that the alloy is glass-forming, amorphous phases were not detected under the selected solidification conditions.

References (31)

1. S. V. Popova, O. A. Sazonova, V. V. Brazhkin, N. V. Kalyaeva, M. B. Kondrin, A. G. Lyapin. Phys. Solid State. 48 (11), 2177 (2006). (in Russian) [С. В. Попова, О. А. Сазонова, В. В. Бражкин, Н. В. Каляева, М. Б. Кондрин, А. Г. Ляпин. ФТТ. 48 (11), 2177 (2006).]. Crossref
2. V. G. Pushin, A. I. Lotkov, Yu. R. Kolobov, R. Z. Valiev, E. F. Dudarev, N. N. Kuranova, A. P. Dyupin, D. V. Gunderov, G. P. Bakach. Phys. Metals Metallogr. 106, 520 (2008). (in Russian) [В. Г. Пушин, А. И. Лотков, Ю. Р. Колобов, Р. З. Валиев, Е. Ф. Дударев, Н. Н. Куранова, А. П. Дюпин, Д. В. Гундеров, Г. П. Бакач. ФММ. 106, 520 (2008).]. Crossref
3. A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, D. V. Gunderov. Phys. Metals Metallogr. 119 (4), 374 (2018). (in Russian) [А. В. Лукьянов, В. Г. Пушин, Н. Н. Куранова, А. Э. Свирид, А. Н. Уксусников, Ю. М. Устюгов, Д. В. Гундеров. ФММ. 119 (4), 374 (2018).]. Crossref
4. V. E. Vaganov, A. V. Aborkin, M. I. Alymov, V. D. Berbentsev. Metals. 5, 67 (2015). (in Russian) [В. Е. Ваганов, А. В. Аборкин, М. И. Алымов, В. Д. Бербенцев. Металлы. 5, 67 (2015).].
5. V. S. Edelman. Near absolute zero. Moscow, Science (1983) 176 p. (in Russian) [В. С. Эдельман. Вблизи абсолютного нуля. Москва, Наука (1983) 176 с.].
6. A. P. Korolev, D. M. Mordasov. The behavior of materials in an electric field. FSBEI HPE «TSTU» (2012) 80 p. (in Russian) [А. П. Королёв, Д. М. Мордасов. Поведение материалов в электрическом поле. ФГБОУ ВПО «ТГТУ» (2012) 80 с.].
7. G. Colm, A. Freeman. Physics - Uspekhi. 88 (4), 703 (1966). (in Russian) [Г. Кольм, А. Фриман. УФН. 88 (4), 703 (1966).]. Crossref
8. Z. Wang, X. F. Liu, J. X. Xie. Mater. Sci. Eng. A. 532, 536 (2012). Crossref
9. H. Fu, S. Song, L. Zhuo, Z. Zhang, J. Hie. Mater. Sci. Eng. A. 650, 218 (2016). Crossref
10. A. M. Glezer, I. E. Permyakova. Melt hardened nanocrystals. Moscow, FIZMATLIT (2012) 360 p. (in Russian) [А. М. Глезер, И. Е. Пермякова. Нанокристаллы, закаленные из расплава. Мoсква, ФИЗМАТЛИТ (2012) 360 с.].
11. I. G. Brodova, P. S. Popel, N. M. Barbin, N. A. Batolin. Melts as the basis for the formation of the structure and properties of aluminum alloys. Yekaterinburg, UB RAS (2005) 369 p. (in Russian) [И. Г. Бродова, П. С. Попель, Н. М. Барбин, Н. А. Ватолин. Расплавы как основа формирования структуры и свойств алюминиевых сплавов. Екатеринбург, УрО РАН (2005) 369 с.].
12. S. G. Menshikova, V. V. Brazhkin, V. I. Lad’yanov, B. E. Pushkarev. Journal of Crystal Growth. 524, 125164 (2019). Crossref
13. S. G. Menshikova, I. G. Shirinkina, I. G. Brodova, V. V. Brazhkin, V. I. Lad’yanov, B. E. Pushkarev. Journal of Crystal Growth. 525, 125206 (2019). Crossref
14. S. G. Menshikova, I. G. Shirinkina, I. G. Brodova, V. V. Brazhkin. Russian Metallurgy (Metally). 2, 135 (2019). (in Russian) [C. Г. Меньшикова, И. Г. Ширинкина, И. Г. Бродова, В. В. Бражкин. Расплавы. 1, 18 (2019).]. Crossref
15. K. Fan, X. Yue, A. Inoue, C.-T. Liu, X. Shen, P. K. Liaw. Mat. Res. 22 (1), 1 (2019). Crossref
16. S. G. Rassolov, E. A. Sviridova, V. V. Maximov, V. K. Nosenko, I. V. Zhikharev, D. V. Matveev, E. A. Pershina, V. I. Weaver. Metallofiz. Noveishie Tekhnol. 37 (8), 1089 (2015). (in Russian) [С. Г. Рассолов, Е. А. Свиридова, В. В. Максимов, В. К. Носенко, И. В. Жихарев, Д. В. Матвеев, Е. А. Першина, В. И. Ткач. Металлофизика и новейшие технологии. 37 (8), 1089 (2015).]. Crossref
17. V. F. Degtyareva. Structura i ystoichivost phaz visokogo davlenia v binarnykh splavah sp metallov: Dissertacija na soiskanie stepeni dokhora phiziko-matematicheskih nauk. Chernogolovka (2002) 205 p. (in Russian) [В. Ф. Дегтярева. Структура и устойчивость фаз высокого давления в бинарных сплавах sp металлов: дисс. докт. ф.-м. наук. Черноголовка (2002) 205 с.].
18. S. M. Stishov. Phase transitions for beginners. Moscow, Troitsk, «Trent» (2014) 90 p. (in Russian) [С. М. Стишов. Фазовые переходы для начинающих. Москва, Троицк, «Тровант» (2014) 90 с.].
19. D. S. Cyclis. Technique of physical and chemical research at high and ultrahigh pressures. Moscow, Chemistry (1976) 63 p. (in Russian) [Д. С. Циклис. Техника физико-химических исследований при высоких и сверхвысоких давлениях. Москва, Химия (1976) 63 c.].
20. V. V. Brazhkin. Vliyanie visokogo davlenia na zatverdevanie metallicheskih rasplavov (Pb, In, Cu, dvoinie splavy na osnove medi: Dissertacija na soiskanie stepeni dokhora phiziko-matematicheskih nauk. Moscow (1996) 150 p. (in Russian) [В. В. Бражкин Влияние высокого давления на затвердевание металлических расплавов (Pb, In, Cu, двойные сплавы на основе меди): дисс. канд. физ.-мат. наук. Москва (1996) 150 с.].
21. F. Eirich. Rheology. Theory and applications. Moscow, Ed. Foreign. Lit. (1962) 824 p. (in Russian) [Ф. Эйрих. Реология. Теория и приложения. Москва, Изд. иност. лит. (1962) 824 с.].
22. J. A. Sechar, M. Mohon, C. Divacar, A. K. Singh. Scr. Mat. 18, 1327 (1984). Crossref
23. J. A. Sechar, G. S. Raddy, P. Venkocteswarrao. Proc. Int. Conf. Rapidly solidified Materials. 5, 605 (1985) (1985).
24. O. Mishima, L. D. Calver, E. Whalley. Nature. 310 (5976), 393 (1984). Crossref
25. V. A. Pavlov. Phys. Metals Metallogr. 59 (4), 629 (1985). (in Russian) [В. А. Павлов. ФММ. 59 (4), 629 (1985).].
26. I. V. Tananaev, V. B. Fedorov, L. V. Malyukova, E. B. Captains. Doc. USSR Academy of Sciences. 283 (6), 1364 (1985). (in Russian) [И. В. Тананаев, В. Б. Федоров, Л. В. Малюкова, E. B. Капитанов. Докл. АН СССР. 283 (6), 1364 (1985).].
27. S. V. Popova. Physics and technology of high pressures. 11, 3 (1986). (in Russian) [С. В. Попова. Физика и техника высоких давлений. 11, 3 (1986).].
28. E. G. Ponyatovsky, V. E. Antonov, I. T. Belash. Physics - Uspekhi. 137, 663 (1982). (in Russian) [Е. Г. Понятовский, В. Е. Антонов, И. Т. Белаш. УФН. 137, 663 (1982).]. Crossref
29. J. J. Sobczak, L. Drenchev, R. Asthana. International Journal of Cast Metals Research. 25 (1), 1 (2012). Crossref
30. A. Yu. Basharin, V. S. Dozhdikov A. V. Kirillin, M. A. Turchaninov, L. R. Fokin. Letters to the PTF. 36 (12), 39 (2010). (in Russian) [А. Ю. Башарин, В. С. Дождиков, А. В. Кириллин, М. А. Турчанинов, Л. Р. Фокин. Письма в ЖТФ. 36 (12), 39 (2010).].
31. T. Yin, Y. Fang, W. K. Chong, K. T. Ming, S. Jiang, X. Li, J. L. Kuo, J. Fang, T. C. Sum, T. J. White, J. Yan, Z. X. Shen. Adv. Mater. 30 (2), 1705017 (2018). Crossref

Similar papers

Funding