Effect of synthesis temperature on the formation of nickel-copper composite nanoparticles

I.Yu. Isaeva, G.Yu. Ostaeva, E.A. Eliseeva, A.L. Golovin, A.L. Vasiliev show affiliations and emails
Received 16 September 2022; Accepted 10 January 2023;
Citation: I.Yu. Isaeva, G.Yu. Ostaeva, E.A. Eliseeva, A. L. Golovin, A. L. Vasiliev. Effect of synthesis temperature on the formation of nickel-copper composite nanoparticles. Lett. Mater., 2023, 13(2) 149-152
BibTex   https://doi.org/10.22226/2410-3535-2023-2-149-152

Abstract

Images of samples obtained at a temperature of +5 ° demonstrate a completely different morphology in comparison with samples obtained at +25°, demonstrate a completely different morphology in comparison with samples
EDX elemental mapping indicated that the particles contain mainly Cu and O in both samples.The influence of temperature on the process of synthesis of catalytic nanoparticles is studied. The microstructure of nanoparticles and copper to nickel ratio were investigated by transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray microanalysis and X-ray diffraction. It was found that even minor temperature variations led to the drastic microstructure changes in the nanoparticles.

References (20)

1. P. H. C. Camargo, K. G. Satyanarayana, F. Wypych. Materials Research. 12 (1), 1 (2009). Crossref
2. C. H. Borchers, M. L. Martin, G. A. Vorobjeva, O. S. Morozova, A. A. Firsova, A. V. Leonov, E. Z. Kurmaev, A. I. Kukharenko, I. S. Zhidkov, S. O. Cholakh. J. Nanopart. Res. 18, 344 (2016). Crossref
3. I. Yu. Isaeva, G. Yu. Ostaeva, V. V. Grushina, A. A. Litmanovich, O. S. Morozova. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012087 (2018). Crossref
4. K. Santhi, E. Thirumal, S. N. Karthick, H.-J. Kim, M. Nidhin, V. Narayanan, A. Stephen. J Nanopart. Res. 14, 868 (2012). Crossref
5. C. L. Aravinda, P. Bera, V. Jayaram, A. K. Sharma, S. M. Mayanna. Mater. Res. Bull. 37 (3), 397 (2002). Crossref
6. P. Srinoi, Y.-T. Chen, V. Vittur, M. D. Marquez, T. R. Lee. Appl. Sci. 8 (7), 1106 (2018). Crossref
7. A. Rahdar, M. Aliahmad, Y. Azizi, N. Keikha, M. Moudi, F. Keshavarzi. Nanomedicine Res. J. 2 (2), 78 (2017). Crossref
8. P. Moganavally, R. Suresh, M. Deepa. IOSR J. of App. Chem. 7 (11), 34 (2014). Crossref
9. O. E. Litmanovich. Polym. Sci. Ser. C. 50 (1), 63 (2008). Crossref
10. A. A. Khort, K. B. Podbolotov, R. Serrano-García, Y. K. Gun’ko. J. Solid State Chem. 253, 270 (2017). Crossref
11. K. B. Podbolotov, A. A. Khort, A. B. Tarasov, G. V. Tursov, S. I. Roslyakov, A. S. Mukasyan. Combustion Sci. Technol. 189 (11), 1878 (2017). Crossref
12. V. I. Romanovsky, A. A. Khort, K. B. Podbolotov, N. Yu. Sdobnyakov, V. S. Myasnichenko, D. N. Sokolov. Russian J. of Chem. and Chemical Technology. 61 (9-10), 42 (2018). (in Russian) [В.И. Романовский, А.А. Хорт, К.Б. Подболотов, Н.Ю. Сдобняков, В.С. Мясниченко, Д.Н. Соколов. Изв. вузов. Химия и хим. технология. 61 (9-10), 42 (2018).]. Crossref
13. G. Sharma, A. Kumar, S. Sharma, M. Naushad, R. P. Dwivedi, Z. A. Alothman, G. T. Mola. J. King Saud Univ. Sci. 31 (2), 257 (2017). Crossref
14. O. E. Litmanovich, A. A. Litmanovich, I. M. Papisov. Polym. Sci. Ser. B. 42 (4), 670 (2000). (in Russian) [О. Е. Литманович, А. А. Литманович, И. М. Паписов. Высокомолекулярные Соединения Серия Б. 42 (4), 670 (2000).].
15. G. Yu. Ostaeva, V. V. Grushina, E. A. Eliseeva, I. Yu. Isaeva, I. V. Morenko, A. A. Litmanovich. Polym. Sci. Ser. B. 63 (6), 737 (2021). Crossref
16. G. Yu. Ostaeva, I. Yu. Isaeva, I. V. Morenko, E. A. Eliseeva, A. A. Litmanovich. Polym. Sci. Ser. B. 61 (3), 254 (2019). Crossref
17. F. Bonet, S. Grugeon, L. Dupont, R. H. Urbina, C. Guéry, J. M. Tarascon. Journal of Solid State Chemistry. 172 (1), 111 (2003). Crossref
18. H. L. Niu, Q. W. Chen, Y. S. Lin, Y. S. Jia, H. F. Zhu, M. Ning. Nanotechnology. 15 (8), 1054 (2004). Crossref
19. M. C. Neuburger. Zeitschrift fuer Physik. 67 (11-12), 845 (1931). Crossref
20. S. Asbrink, L. J. Norrby. Acta Crystallographica B. 26, 8 (1970). Crossref

Similar papers