Superplastic forming of titanium alloys at 700°C

M.R. Shagiev, A.A. Kruglov, O.A. Rudenko, M.A. Murzinova show affiliations and emails
Received 22 September 2022; Accepted 12 October 2022;
Citation: M.R. Shagiev, A.A. Kruglov, O.A. Rudenko, M.A. Murzinova. Superplastic forming of titanium alloys at 700°C. Lett. Mater., 2022, 12(4) 332-335
BibTex   https://doi.org/10.22226/2410-3535-2022-4-332-335

Abstract

Better formability of the novel alloy is mainly due to the high content of the beta phase.
Superplastic forming results in improvement of the microstructure homogeneity.The formability of the novel Ti-1.5Al-1.5V-2.75Fe-3.0Mo-0.25Ni-0.1B alloy and the commercial Ti-6Al-4V alloy at 700°С was evaluated in the present study. Experiments have demonstrated the possibility of superplastic forming of both alloys with a fine-grained microstructure at 700°C and a constant argon gas pressure p = 2 MPa. However, the forming time for the novel alloy was only a few minutes (τ = 235 s), while for the Ti-6Al-4V it amounted almost 2.5 hours (τ = 8700 s). The better formability of the novel alloy at 700°С compared to the commercial one is in good agreement with the results of computer simulations performed earlier and is mainly due to an increased content of the β phase. Microstructural analysis showed that low-temperature superplastic forming was accompanied by the development of spheroidization and recrystallization processes. It is important that recrystallization did not lead to a significant grain growth and provided an increase in the structure homogeneity and randomization of the rolling texture. The most significant improvement of microstructure homogeneity after forming at 700°C was observed in the Ti-6Al-4V alloy with the initial partially recrystallized structure.

References (21)

1. O. A. Kaibyshev. Superplasticity of Alloys. Intermetallides and Ceramics. Berlin, Springer-Verlag (1992) 317 p. Crossref
2. A. Barnes. Journal of Materials Engineering and Performance. 16, 440 (2007). Crossref
3. E. Alabort, D. Putman, R. C. Reed. Acta Materialia. 95, 428 (2015). Crossref
4. G. A. Salishchev, R. M. Galeyev, O. R. Valiakhmetov, R. V. Safiullin, R. Ya. Lutfullin, O. N. Senkov, F. H. Froes, O. A. Kaibyshev. Journal of Materials Processing Technology. 116, 265 (2001). Crossref
5. P. N. Comley. Materials Science Forum. 447 - 448, 233 (2004). Crossref
6. M. R. Shagiev, M. A. Murzinova. Letters on Materials. 11 (4s), 553 (2021). Crossref
7. E. Alabort, D. Barba, M. R. Shagiev, M. A. Murzinova, R. M. Galeyev, O. R. Valiakhmetov, A. F. Aletdinov, R. C. Reed. Acta Materialia. 178, 275 (2019). Crossref
8. M. R. Shagiev, A. A. Kruglov, E. Alabort, F. U. Enikeev, R. M. Shagiev. In: Ultrafine-grained and Nanostructured Materials (Ed. by A. A. Nazarov). Ufa, Bashkir State University (2020) p. 193. (in Russian) [М. Р. Шагиев, А. А. Круглов, Э. Алаборт, Ф. У. Еникеев, Р. М. Шагиев. Ультрамелкозернистые и наноструктурные материалы: Сборник трудов Открытой школы-конференции стран СНГ (ред. А. А. Назаров). Уфа, РИЦ БашГУ (2020) с. 193.].
9. F. U. Enikeev, A. A. Kruglov. International Journal of Mechanical Sciences. 37 (5), 473 (1995). Crossref
10. O. A. Rudenko, A. A. Kruglov, R. V. Safiullin, O. R. Valiakhmetov, R. Ya. Lutfullin. Forging and Stamping Production. Material Working by Pressure. 4, 5 (2006). (in Russian) [О. А. Руденко, А. А. Круглов, Р. В. Сафиуллин, О. Р. Валиахметов, Р. Я. Лутфуллин. КШП. ОМД. 4, 5 (2006).].
11. S. A. Saltykov. Stereometric metallography. Moscow, Metallurgy (1970) 376 p. (in Russian) [С. А. Салтыков. Стереометрическая металлография. Москва, Металлургия (1970) 376 с.].
12. M. A. Shtremel. Strength of Alloys. Part 1: Defects of the Lattice. Moscow, MISIS (1999) 384 p. (in Russian) [М. А. Штремель. Прочность сплавов. Часть I: Дефекты решетки. Москва, МИСиС (1999) 384 с.].
13. Superplastic Forming of Structural Alloys (Ed. by N. E. Paton, C. H. Hamilton). Warrendale, PA, The Metallurgical Society of AIME (1982) 414 p.
14. G. R. Murzina, V. R. Ganieva, A. A. Kruglov, F. U. Enikeev. Letters on Materials. 11 (4s), 548 (2021). Crossref
15. N. Saunders. In: Titanium’95: Science and Technology (Ed. by P. Bleckinsop, W. J. Evans, H. M. Flower). London, Institute of Materials (1996) 2167 p.
16. G. Lütjering, J. C. Williams. Titanium, 2nd ed. Berlin, Springer-Verlag (2007) 449 p.
17. U. Zwicker. Titanium and its alloys. Moscow, Metallurgy (1979) 512 p. (in Russian) [У. Цвикер. Титан и его сплавы. Москва, Металлургия (1979) 512 с.].
18. Q. Chao, P. D. Hodgson, H. Beladi. Materials Science and Engineering A. 694, 13 (2017). Crossref
19. J. Zhao, K. Wang, K. Huang, G. Liu. Materials Characterization. 151, 429 (2019). Crossref
20. S. L. Semiatin. Metallurgical and Materials Transactions A. 51, 2593 (2020). Crossref
21. S. V. Zherebtsov, E. A. Kudryavtsev, G. A. Salishchev, B. B. Straumal, S. L. Semiatin. Acta Materialia. 121, 152 (2016). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - State Assignment of the Institute for Metals Superplasticity Problems of the Russian Academy of Sciences