Al-Ce alloy high cooling rate cells: a combined experimental and modeling strategy

R.B. Baraldi, D. Silva, G.L. Gouveia ORCID logo , A. Garcia, J.E. Spinelli ORCID logo show affiliations and emails
Received 05 April 2023; Accepted 06 June 2023;
Citation: R.B. Baraldi, D. Silva, G.L. Gouveia, A. Garcia, J.E. Spinelli. Al-Ce alloy high cooling rate cells: a combined experimental and modeling strategy. Lett. Mater., 2023, 13(4) 281-285
BibTex   https://doi.org/10.22226/2410-3535-2023-4-281-285

Abstract

explains the efffects of Ce content on the properties as well as on the formed morphologies and scales.Al-Ce alloys are anticipated to offer high-temperature strength. In recent years, interest in these alloys has increased. While previous studies have looked into dendritic length-scale and how it relates to tensile properties, cellular growth has not been debated, despite its well-known significance. An in-depth study of Al-4, 6 and 10.1 wt.% Ce alloys involving microstructural analysis of Cu-mold centrifugal cast samples at various points, Vickers hardness, SEM and tensile properties was carried out here. α-Al cells were identified for a computed solidification velocity of 3.1 mm / s and a cooling rate of 155 K / s. These samples showed balanced tensile properties.

References (28)

1. Y. Fan, M. Makhlouf. Metall. Mater. Trans. A. 46, 3808 (2015). Crossref
2. F. Czerwinski. Cerium in Aluminum Alloys. J. Mater. Sci. 55, 24 (2020). Crossref
3. F. Czerwinski. Mater. Sci. Technol. 36, 255 (2020). Crossref
4. L. Wang, R. Qi, B. Ye, Y. Bai, R. Huang, H. Jiang, W. Ding. Metall. Mater. Trans. A. 51, 1972 (2020). Crossref
5. D. S. Ng, D. C. Dunand. Mater. Sci. Eng. A. 786, 139398 (2020). Crossref
6. L. Zhou, T. Huynh, S. Park et al. J. Mater. Sci. 55, 14611 (2020). Crossref
7. A. Plotkowski, O. Rios, N. Sridharan et al. Acta Mater. 126, 507 (2017). Crossref
8. P. R. Goulart, J. E. Spinelli, N. Cheung, A. Garcia. Mater Chem Phys. 119, 272 (2010).
9. M. V. Canté, J. E. Spinelli, N. Cheung, A. Garcia. Metals Mater Int. 16, 39 (2010).
10. W. R. Osório, L. C. Peixoto, M. V. Canté, A. Garcia. Mater Des. 31, 4485 (2010).
11. W. R. Osório, P. R. Goulart, A. Garcia. Mater Lett. 62, 365 (2008).
12. M. V. Canté, C. Brito, J. E. Spinelli, A. Garcia. Mater Des. 51, 342 (2013). Crossref
13. A. A. Martin, J. A. Hammons, H. B. Henderson, et al. Appl Mater Today. 22, 100972 (2021). Crossref
14. C. Brito, G. Reinhart, H. Nguyen-Thi et al. J Alloys Compd. 636, 145 (2015). Crossref
15. H. Kaya, E. Çardili, M. Gunduz. Appl Phys A. 94, 155 (2009).
16. W. Kurz, D. J. Fisher. Fundamentals of Solidification. Aedermannsdorf, Trans Tech Publications (1992) pp. 85 - 87.
17. J. A. Dantzig, M. Rappaz. Solidification. EPFL Press (2009).
18. B. Chanda, G. Potnis, P. P. Jana, J. Das. J. Alloy. Compd. 827, 154226 (2020). Crossref
19. A. Hawksworth, W. M. Rainforth, H. Jones. J Crystal Growth. 197, 286 (1999). Crossref
20. F. Czerwinski, B. Shalchi Amirkhiz. Materials. 20, 4549 (2020). Crossref
21. D. Weiss, O. Rios, Z. Sims, et al. Casting Characteristics of High Cerium Content Aluminum Alloys. In: Light Metals (ed. by A. Ratvik) The Minerals, Metals & Materials Series. Springer (2017). Crossref
22. J. D. Hunt, S. Z. Lu. Metall. Mater. Trans. A. 27A, 611 (1996). Crossref
23. J. E. Spinelli, A. A. Bogno, H. Henein. Metall Mater Trans A. 49, 550 (2018). Crossref
24. L. F. Mondolfo. Aluminum Alloys: Structure and Properties. Butterworths and Co., Ltd., London (1976) p. 806. Crossref
25. A. Juarez-Hernandez, H. Jones. J Crystal Growth. 208, 442 (2000). Crossref
26. H. Ohtani. The CALPHAD Method. In: Springer Handbook of Materials Measurement Methods (ed. by H. Czichos, T. Saito, L. Smith). Springer Handbooks, Springer, Berlin, Heidelberg (2006). Crossref
27. K. Sisco, A. Plotkowski, Y. Yang et al. Sci Rep. 11, 6953 (2021). Crossref
28. G. L. Gouveia, L. F. Gomes, N. Cheung et al. Adv Eng Mater. 23, 2001177 (2021). Crossref

Similar papers

Funding

1. Fundação de Amparo à Pesquisa do Estado de São Paulo - grants 2019/23673-7 and 2022/06232-0