Microstructure of a titanium sample produced by ultrasonic consolidation

A.A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov show affiliations and emails
Received 06 April 2022; Accepted 17 May 2022;
Citation: A.A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov. Microstructure of a titanium sample produced by ultrasonic consolidation. Lett. Mater., 2022, 12(2) 153-157
BibTex   https://doi.org/10.22226/2410-3535-2022-2-153-157

Abstract

The structure of a sample obtained by consolidation of four sheets of CP Ti was examined. It was shown that the quality of bonding between the sheets decreases from the bottom to the top and the formation of a joint of satisfactory quality was accompanied by a change in the microtexture, weak grain growth and the formation of a subgrain structure.The structure of a sample obtained by layer-by-layer consolidation of four sheets of commercially pure titanium with the thickness of 0.2 mm by means of ultrasonic welding was examined. It was shown that with each subsequent layer, the quality of the joints decreased. The formation of a joint of satisfactory quality was accompanied by a change in the microtexture, weak grain growth and the formation of a subgrain structure in the welded sheets, as well as an increase in microhardness in the joint zone by 30 %.

References (22)

1. A. K. Gujba, M. Medraj. Advances in Materials Science and Engineering. 2020, 1064870 (2020). Crossref
2. Advances in Manufacturing and Processing of Materials and Structures (ed. by Y. Bar-Cohen). 1st ed. New-York, CRC Press (2018) 560 p.
3. W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, S. S. Babu. Int. Mater. Rev. 61 (5), 315 (2016). Crossref
4. B. Dutta, F. H. (Sam) Froes. Metal Powder Report. 72 (2), 96 (2017). Crossref
5. S. M. Thompson, Z. S. Aspin, N. Shamsaei, A. Elwany, L. Bian. Additive Manufacturing. 8, 163 (2015). Crossref
6. R. J. Friel. In: Power Ultrasonics. Applications of High-Intensity Ultrasound (ed. by J. A. Gallego-Juárez, K. F. Graff). Woodhead Publishing (2015) pp. 313 - 335. Crossref
7. P. J. Wolcott, M. J. Dapino. In: Additive Manufacturing Handbook: Product Development for the Defense Industry (ed. by A. B. Badiru, V. V. Valencia, D. Liu). 1st ed. Boca Raton, CRC Press (2017). Crossref
8. C. D. Hopkins, P. J. Wolcott, M. J. Dapino, A. G. Truog, S. S. Babu, S. A. Fernandez. Journal of Engineering Materials and Technology. 134 (1), 011004 (2012). Crossref
9. M. R. Sriraman, S. S. Babu, M. Short. Scripta Materialia. 62, 560 (2010). Crossref
10. P. Wolcott, A. Hehr, M. J. Dapino. Journal of Materials Research. 29 (17), 2055 (2014). Crossref
11. D. Li. The International Journal of Advanced Manufacturing Technology. 113, 1 (2021). Crossref
12. Z. Zhu, M. Li, Z. Su, D. Zhang, Y. Zhang. In: Transactions on Intelligent Welding Manufacturing (ed. by S. Chen, Y. Zhang, Z. Feng). Singapore, Springer (2018) pp. 120 -129.
13. A. A. Mukhametgalina, M. A. Murzinova, A. A. Nazarov. Metall. Mater. Trans. A. 53, 1119 (2022). Crossref
14. E. R. Shayakhmetova, М. A. Murzinova, A. A. Nazarov. Metals. 11 (11), 1800 (2021). Crossref
15. A. A. Mukhametgalina, M. A. Murzinova, A. A. Nazarov. Lett. Mater. 11 (4), 508 (2021). Crossref
16. Jh.-Y. Lin, Sh. Nambu, T. Koseki. ISIJ International. 60 (2), 330 (2020). Crossref
17. U. Zwicker. Titan und titanlegierungen. Springer-Verlag, Berlin (1974) pp. 248 - 337. Crossref
18. Metallovedenie titana i yego splavov (ed. by S. G. Glazunov, B. A. Kolachev). Moscow, Metallurgiya (1992) 352 p. (in Russian) [Металловедение титана и его сплавов. Ответств. ред. С. Г. Глазунов, Б. А. Колачев. Москва, Металлургия (1992) 352 с.].
19. C. Y. Kong, R. C. Soar, P. M. Dickens. Proc. IMechE Pt. C: J. Mech. Eng. Sci. 219, 83 (2005). Crossref
20. F. J. Humphreys. J. Mater. Sci. 36, 3833 (2001). Crossref
21. Y. Jiang, Zh. Chen, C. Zhan, T. Chen, R. Wang, Ch. Liu. Mater. Sci. Eng. A. 640, 436 (2015). Crossref
22. H. Conrad. Prog. Mater. Sci. 26 (2-4), 123 (1981). Crossref

Similar papers