Welding of AMg4 aluminum alloy by applying ultrasonic vibrations

Received 27 April 2022; Accepted 13 June 2022;
Citation: S.K. Sundukov. Welding of AMg4 aluminum alloy by applying ultrasonic vibrations. Lett. Mater., 2022, 12(3) 184-190
BibTex   https://doi.org/10.22226/2410-3535-2022-3-184-190

Abstract

The transmission of ultrasound vibrations during welding leads to changes in the welding zone. The microstructure has a significantly reduced width of the dendritic zone  than in the reference specimen.The effects of applying ultrasonic vibrations in welding of AMg4 aluminum alloy are studied. The experimental studies in the considered conditions allowed finding the optimal amplitude of vibrations (9 –10 µm). When ultrasound is applied to the molten pool, the liquid metal is subject to sound pressure, cavitation, and acoustic flows, which affects the crystallization parameters. The comparison of the microstructure of the welding zone shows a significantly reduced dendritic segregation when vibrations are applied. The weld joint obtained in the selected conditions has an increased strength and high plasticity.

References (21)

1. S. K. Sundukov, R. I. Nigmetzyanov, D. S. Fatyukhin. Russian Metallurgy (Metally). 13, 29 (2021). Crossref
2. H. K. D. H. Bhadeshia. Science and Technology of Welding and Joining. 20 (6), 451 (2015). Crossref
3. D. M. Ryabkin, A. V. Lozovskaya, I. E. Sklabinskaya. Monografiya: metallovedenie svarki alyuminiya i ego splavov. Kiev (1990) 160 p. (in Russian) [Д. М. Рябкин, А. В. Лозовская, И. Е. Склабинская. Монография: металловедение сварки алюминия и его сплавов. Киев (1990) 160 с.].
4. R. Xiao, X. Zhang. Journal of Manufacturing Processes. 16 (2), 166 (2014). Crossref
5. E. Sh. Statnikov, V. O. Muktepavel. Welding International. 17 (9), 741 (2003). Crossref
6. S. K. Sundukov, R. I. Nigmetzyanov, V. M. Prikhod’ko et al. Russian Engineering Research. 41 (6), 570 (2021). Crossref
7. Y. Han, et al. Mater. Sci. Eng.: A. 405 (1-2), 306 (2005). Crossref
8. V. I. Dobatkin, G. I. Eskin. Proc. 4th Int. Conf. on Semi-Solid Processing of Alloys and Composites. Univ. Sheffield, UK (1996) p. 193.
9. Patent USSR № 515608 / 30.05.1976. (in Russian) [Патент СССР № 515608 / 30.05.1976.].
10. Q. Sun, et al. China Weld. 17 (4), 52 (2008).
11. Y. Y. Fan, C. L. Yang, S. B. Lin, C. L. Fan, W. G. Liu. Weld. J. 91 (3), 91 (2012).
12. Y. Cui, C. Xu, Q. Han. Advanced Engineering Materials. 9 (3), 161 (2007). Crossref
13. C. Zhang, M. Wu, J. Du. Tsinghua Science and Technology. 6 (5), 475 (2001).
14. T. V. da Cunha, C. E. Niño Bohórquez. Ultrasonics. 56, 201 (2015). Crossref
15. G. I. Eskin. Ultrasonic Sonochemistry. 8, 319 (2001). Crossref
16. H. Dong, et al. Mater. Sci. Eng.: A. 534, 424 (2012). Crossref
17. X. Cai, S. Lin, X. Wang, C. Yang, C. Fan. Materials. 12, 4081 (2019). Crossref
18. C. Chen, C. Fan, Z. Liu, X. Cai, S. Lin, Y. Zhuo. Acta Metall. Sin. (Engl. Lett.). 33, 1397 (2020). Crossref
19. Q. Chen, S. Lin, C. Yang, C. Fan, H. Ge. Acta Metall. Sin. (Engl. Lett.). 29, 1081 (2016). Crossref
20. Teoriya svarochnyh processov: uchebnik dlya vuzov po spec. “Oborudovanie i tekhnologiya svarochnogo proizvodstva” (ed. by V. V. Frolov). Moscow (1988) 559 p. (in Russian) [Теория сварочных процессов: учебник для вузов по спец. «Оборудование и технология сварочного производствава» (Под редакцией В. В. Фролова). Москва (1988) 559 с.].
21. D. S. Fatyukhin, R. I. Nigmetzyanov, V. M. Prikhodko, A. V. Sukhov, S. K. Sundukov. Metals. 12 (138), (2022). Crossref

Similar papers

Funding

1. Russian Science Foundation - 21-79-00185