The effect of alloying and fluorination on the oxidation behavior of β-solidifying γ-TiAl based alloys

L.R. Shaikhutdinova, V.M. Imayev, D.M. Trofimov ORCID logo , R.M. Imayev show affiliations and emails
Accepted  24 October 2022
Citation: L.R. Shaikhutdinova, V.M. Imayev, D.M. Trofimov, R.M. Imayev. The effect of alloying and fluorination on the oxidation behavior of β-solidifying γ-TiAl based alloys. Lett. Mater., 2022, 12(4) 343-349
BibTex   https://doi.org/10.22226/2410-3535-2022-4-343-349

Abstract

The figure shows the mass gain depending on oxidation time of the TNM (Ti-43.5Al-4Nb-1Mo-0.1B, at,%) and TNZ (Ti-44Al-6(Nb,Zr,Hf)-0.15B, at.%) samples, which were exposed to air at 800°C. The dotted lines show the approximation from 500 to 1000 h.The present work is devoted to study of the oxidation behavior of two β-solidifying γ-TiAl alloys (Ti-43.5Al-4Nb-1Mo-0.1B (TNM alloy) and Ti-44Al-6(Nb, Zr, Hf)-0.15B (TNZ alloy) (at.%)). The as-cast alloys were subjected to upset forging and heat treatment that resulted in similar microstructures in both alloys. Plate-shaped samples were cut from the obtained workpieces, mechanically polished and subjected to oxidation exposure at 800°C (500 h). The samples during annealing were periodically removed from the furnace and weighed. After oxidation exposure the mass gain of the TNZ sample was found appreciably smaller than that of the TNM sample. The preliminary fluorination treatment in a diluted hydrofluoric acid (HF) provided a noticeable increase of the oxidation resistance in the case of the TNM alloy and a significant worsening of the oxidation resistance in the case of the TNZ alloy. At the same time, the non-fluorinated sample of the TNZ alloy showed near the same oxidation resistance as the TNM samples subjected to preliminary fluorination treatment. EDS analysis revealed the competitive formation of aluminum and titanium oxides on the surfaces of the oxidized TNM and TNZ samples. Predomination of the alumina formation contributed to higher oxidation resistance.

References (17)

1. B. P. Bewlay, S. Nag, A. Suzuki, M. J. Weimer. Mater. at High Temps. 33, 549 (2016). Crossref
2. P. Janschek. Materials Today: Proceedings. 2S, S92 (2015). Crossref
3. Y.-W. Kim, S. Kim. JOM. 70, 553 (2018). Crossref
4. X. Wu, A. Huang, D. Hu, M. H. Loretto. Intermetallics. 17, 540 (2009). Crossref
5. M. C. Galetz, A. S. Ulrich, C. Oskay, D. Faehsing, N. Laska, U. Schulz, M. Schuetze. Intermetallics. 123, 106830 (2020). Crossref
6. L. Mengis, A. S. Ulrich, P. Watermeyer, C. H. Liebscher, M. C. Galetz. Corrosion Science. 178, 109085 (2021). Crossref
7. P. Sallot, J. P. Monchoux, S. Jouli, A. Couret, M. Thomas. Intermetallics. 119, 106729 (2020). Crossref
8. R. Pflumm, S. Friedle, M. Schütze. Intermetallics. 56, 1 (2015). Crossref
9. S. Friedle, N. Nießen, R. Braun, M. Schuetze. Surface & Coatings Technology. 212, 72 (2012). Crossref
10. V. M. Imayev, A. A. Ganeev, D. M. Trofimov, N. Ju. Parkhimovich, R. M. Imayev. Mater. Sci. Eng. A. 817, 141388 (2021). Crossref
11. A. Donchev, L. Mengis, A. Couret, S. Mayer, H. Clemens, M. Galetz. Intermetallics. 139, 107270 (2021). Crossref
12. R. Pflumm, A. Donchev, S. Mayer, H. Clemens, M. Schütze. Intermetallics. 53, 45 (2014). Crossref
13. A. Sommer, Y. Zhang. International conference GAT-2017. San-Diego, USA, Sept. (2011).
14. L.-K. Wu, W.-Y. Wu, J.-L. Song, G.-Y. Hou, H.-Z. Cao, Y.-P. Tang, G.-Q. Zheng. Corrosion Science. 140, 388 (2018). Crossref
15. M. Fröhlich, R. Braun, C. Leyens. Surface and Coatings Technology. 201, 3911 (2006). Crossref
16. N. Chaia, P. L. Cury, G. Rodrigues, G. C. Coelho, C. A. Nunes. Surface and Coatings Technology. 389, 125675 (2020). Crossref
17. L.-K. Wu, J.-J. Wu, W.-Y. Wu, G.-Y. Hou, H.-Z. Cao, Y.-P. Tang, H.-B. Zhang, G.-Q. Zheng. Corrosion science. 146, 18 (2019). Crossref

Similar papers

Funding