The effect of temperature and strain rate on tensile behaviour of the Mg-2Zn-0.1Ca alloy

D.L. Merson, I.S. Yasnikov ORCID logo , A.I. Brilevsky ORCID logo , M.L. Linderov ORCID logo , A.V. Danyuk, E.D. Merson show affiliations and emails
Received 13 December 2022; Accepted 11 April 2023;
Citation: D.L. Merson, I.S. Yasnikov, A.I. Brilevsky, M.L. Linderov, A.V. Danyuk, E.D. Merson. The effect of temperature and strain rate on tensile behaviour of the Mg-2Zn-0.1Ca alloy. Lett. Mater., 2023, 13(3) 185-190
BibTex   https://doi.org/10.22226/2410-3535-2023-3-185-190

Abstract

The inflection point on the dependence of the median frequency of acoustic
emission on strain as an evidence of the intensification of the dynamic
recovery processThe tensile behaviour of magnesium alloy Mg-2Zn-0.1Ca (in wt.%) in the fine-grained state, obtained by multiaxial isothermal forging, has been investigated in a wide range of temperatures (20 ÷ 350)°C and strain rates (5 ×10−4 ÷ 2 ×10−2) s−1 with the measurements of acoustic emission (AE). The dependences of mechanical properties and AE on the test temperature and strain rate were obtained and discussed. It has been established that at temperatures of 200 and 250°C, a dynamic recovery mechanism is realized. The activation energy of the dislocation recovery is calculated, which sharply decreases with increasing strain rate.

References (20)

1. V. Herber, B. Okutan, G. Antonoglou, N. G. Sommer, M. Payer. J. Clin. Med. 10, 1842 (2021). Crossref
2. G. Manivasagam, S. Suwas. Mater. Sci. Technol. 30, 515 (2014). Crossref
3. L.M. Calado, M.J. Carmezim, M.F. Montemor. Front. Mater. 8, 804906 (2022). Crossref
4. U. Riaz, I. Shabib, W. Haider. J Biomed Mater Res B Part B. 107 (6), 1970 (2018). Crossref
5. B. Istrate, C. Munteanu, I. V. Antoniac, Ș. C. Lupescu. Crystals. 12 (10), 1468 (2022). Crossref
6. J. Horky, K. Bryła, M. Krystian, G. Mozdzen, B. Mingler, L. Sajti. Mater. Sci. Eng. A. 826, 142002 (2021). Crossref
7. A. Vinogradov, E. Merson, P. Myagkikh, M. Linderov, A. Brilevsky, D. Merson. Materials. 16, 1324 (2023). Crossref
8. E. D. Merson, V. A. Poluyanov, P. N. Myagkikh, D. L. Merson, A. Y. Vinogradov. Lett. Mater. 12 (3), 177 (2022). Crossref
9. M. Erinc, W. H. Sillekens, R. G. T. M. Mannens, R. J. Werkhoven, T. I. en Techniek. Magnes. Technol. 2009. Available online https://repository.tno.nl/islandora/object/uuid%3A4872dafb-0680-47c0-8751-bdce953b4cfe.
10. R. K. Singh Raman, S. Jafari, S. E. Harandi. Eng. Fract. Mech. 137, 97 (2015). Crossref
11. A. Yamashita, Z. Horita, T. G. Langdon. Mater. Sci. Eng. A. 300, 142 (2001). Crossref
12. W. Wang, Q. Miao, X. Chen, Y. Yu, W. Zhang, W. Chen, E. Wang. Materials (Basel). 11, 2019 (2018). Crossref
13. X. Ding, F. Zhao, Y. Shuang, L. Ma, Z. Chu, C. Zhao. J. Mater. Process. Technol. 276, 116325 (2020). Crossref
14. K. P. Rao, K. Suresh, Y. V. R. K. Prasad. Key Eng. Mater. 794, 305 (2019). Crossref
15. D. Merson, M. Linderov, A. Brilevsky, A. Danyuk, A. Vinogradov. Materials (Basel). 15, 328 (2022). Crossref
16. K. K. Kudasheva, M. L. Linderov, A. I. Brilevsky, A. V. Danyuk, I. S. Yasnikov, D. L. Merson. Russian Physics Journal. 65 (9), 1424 (2023). Crossref
17. S. Lazarev, A. Mozgovoi, A. Vinogradov, A. Lazarev, A. Shvedov. J. Acoustic Emission. 27 (2009). Available online https://www.ndt.net/article/jae/papers/27-212.pdf.
18. M. Furukawa, Y. Miura, M. Nemoto. Journal de Physique Colloques, 48 (C3), 557 (1987). Crossref
19. A. V. Danyuk, D. L. Merson, I. S. Yasnikov, E. A. Agletdinov, M. A. Afanasiev, A. Vinogradov. Letters on Materials. 7 (4), 437 (2017). Crossref
20. I. S. Yasnikov, A. Vinogradov, Y. Estrin. Scripta Mater. 76, 37 (2014). Crossref

Similar papers

Funding

1. Russian Science Foundation - 20-19-00585