Accumulation of deformation and acoustic emission in aluminum-magnesium alloy AMg6 in the conditions of deformation of the structural transition

S.V. Makarov ORCID logo , V.A. Plotnikov show affiliations and emails
Received 19 July 2019; Accepted 15 September 2019;
This paper is written in Russian
Citation: S.V. Makarov, V.A. Plotnikov. Accumulation of deformation and acoustic emission in aluminum-magnesium alloy AMg6 in the conditions of deformation of the structural transition. Lett. Mater., 2020, 10(1) 27-32
BibTex   https://doi.org/10.22226/2410-3535-2020-1-27-32

Abstract

The deformation structural transition is the transition of the material structure to the state of anomalous plasticity as a result of the combined action of thermal fluctuations, static displacements and dynamic oscillatory displacements of standing sound waves formed on natural resonators in the localization of the deformation of the sampleIn the course of thermomechanical loading of an aluminium-magnesium alloy under soft loading conditions, a monotonic-stepwise or quasi-stepwise character of deformation accumulation has been observed. Monotonous accumulation of deformation is followed by a monotonous growth of the root-mean-square voltage of acoustic emission, as well as deformation jumps are followed by high-amplitude discrete signals of acoustic emission. The accumulation of deformation in an aluminum-magnesium alloy in a non-isothermic cycle is characterized by the two-stage process: low-temperature monotonous, with a low rate of deformation accumulation, and high-temperature stepwise or quasi-stepwise with a high-rate of deformation accumulation. The temperature transition point from the low-temperature area to the high-temperature area has the value of approximately 570°C and determines a low-to-high-rate transition of deformation accumulation. This kind of transition from the low-temperature area of deformation accumulation to the high-temperature one is characterized by a change in the mechanism of deformation accumulation and represents a deformation structural transition. Thus, the deformation structural transition is the transition from deformation accumulation that is controlled by thermally-activated dislocations climb to deformation accumulation that is controlled by grain boundary processes of perfect (lattice) dislocations generation at triple boundary junctions and occurs when mechanical stress, temperature and acoustic emission energy achieve certain critical values. While the mechanical stress grows, the transition temperature goes down and the acoustic emission oscillation energy rises thus showing that a certain balance of critical parameters is kept. The deformation structural transition is the result of the joint action of thermal fluctuations, static shifts of stress field and dynamic shifts of standing acoustic waves formed by primary signals of the acoustic emission at natural resonators of the sample volume under deformation.

References (27)

1. A. Portevin, F. Le Chatelier. Seances Acad. Sci. 176, 507 (1923).
2. P. Hahner, A. Ziegenbein, E. Rizzi, H. Neuhauser. Phys. Rev. B. 65 (13), 134109 (2002). Crossref
3. M. M. Krishtal. Physical Mesomechanics. 7, 5 (2004).
4. M. M. Krishtal. Phys. Metals Metallogr. 75, 480 (1993).
5. M. M. Krishtal, D. L. Merson. Phys. Metals Metallogr. 81, 104 (1996).
6. M. M. Krishtal, D. L. Merson. Phys. Metals Metallogr. 71, 187 (1991).
7. A. P. Masson. Annals of Chemistry and Physics. 3, 451 (1841).
8. A. A. Shibkov, R. Yu. Koltsov, M. A. Zheltov, A. V. Shuklinov, M. A. Lebedkin. Bulletin of the Russian Academy of Sciences: Physics. 70, 1570 (2006).
9. A. A. Shibkov, A. E. Zolotov, M. A. Zheltov, A. A. Denisov. Crystallography Reports. 57, 105 (2012). Crossref
10. A. A. Shibkov, A. E. Zolotov, M. F. Zheltov, et al. Technical Physics. The Russian Journal of Applied Physics. 59, 508 (2014). Crossref
11. A. A. Shibkov, A. E. Zolotov, M. F. Zheltov, et al. Phys. Solid State. 56, 881 (2014). Crossref
12. A. A. Shibkov, A. E. Zolotov, M. F. Zheltov, et al. Phys. Solid State. 56, 889 (2014). Crossref
13. V. A. Plotnikov, S. V. Makarov. Technical Physics Letters. 34, 255 (2008). Crossref
14. S. V. Makarov, V. A. Plotnikov, A. I. Potekaev. Russ. Phys. J. 56, 630 (2013). Crossref
15. V. A. Plotnikov, S. V. Makarov. Phys. Met. Metallogr. 105, 395 (2008). Crossref
16. V. A. Plotnikov, S. V. Makarov. Phys. Met. Metallogr. 106, 202 (2008). Crossref
17. M. A. Krishtal, D. L. Merson, A. V. Katsman, M. A. Vyboishchik. Phys. Met. Metallogr. 66, 169 (1988).
18. S. V. Makarov, V. A. Plotnikov. Deformation and destruction of materials. 10, 21 (2015). (in Russian) [С. В. Макаров, В. А. Плотников. Деформация и разрушение материалов. 10, 21 (2015).].
19. S. V. Makarov, V. A. Plotnikov, M. V. Lysikov. Fundamental problems of modern materials science. 3, 309 (2016). (in Russian) [С. В. Макаров, В. А. Плотников, М. В. Лысиков. Фундаментальные проблемы современного материаловедения. 3, 309 (2016).].
20. M. M. Myshlyaev. Polzuchest' poligonizovannykh struktur. In: Nesovershenstva kristallicheskogo stroyeniya i martensitnyye prevrashcheniya. Moscow, Nauka (1972) pp. 194 - 234. (in Russian) [М. М. Мышляев. Ползучесть полигонизованных структур. Сб.: Несовершенства кристаллического строения и мартенситные превращения. Москва, Наука (1972) с. 194 - 234.].
21. V. M. Rozenberg. Polzuchest' metallov. Moscow, Metallurgiya (1967) 276 p. (in Russian) [В. М. Розенберг. Ползучесть металлов. Москва, Металлургия (1967) 276 с.].
22. O. A. Kaibyshev, R. Z. Valiev. Granitsy zeren i svoystva metallov. Moscow, Metallurgiya (1987) 214 p. (in Russian) [О. А. Кайбышев, Р. З. Валиев. Границы зерен и свойства металлов. Москва, Металлургия (1987) 214 с.].
23. M. Yu. Gutkin, I. A. Ovidko, N. V. Skiba. Phys. Solid State. 47, 1662 (2005). Crossref
24. K. A. Padmanabhan, H. Gleiter. Mater. Sci. Eng. A381, (1-2), 28 (2004). Crossref
25. A. K. Mukherjee. Mater. Sci. Eng. A322 (1-2), 1 (2002). Crossref
26. B. Baudelet, M. Suery, A. Eberhardt. J. Phys. 36, 281 (1975).
27. S. V. Makarov, V. A. Plotnikov, A. I. Potekaev. Russ. Phys. J. 57, 950 (2014). Crossref

Similar papers