The effect of stacking fault energy on acoustic emission in pure metals with face-centered crystal lattice

A. Danyuk, D. Merson, I. Yasnikov, E. Agletdinov, M. Afanasyev, A. Vinogradov

Abstract

Many questions remain open in the understanding the role of microstructural factors in the acoustic emission (AE) phenomenon occurring in deforming materials. A comparative analysis of AE time parameters in tensile testing of pure aluminum, copper, silver and nickel specimens having very different values of stacking fault energy (SFE) was undertaken in the present work to clarify the SFE effect on the AE signal. Continuous digital wideband recording was used for AE waveform registration, which offers the possibility to avoid the threshold discriminators and to analyze a continuous AE signal generated during plastic deformation mediated by dislocation mechanisms. The power of the AE signal were selected as the descriptive parameters. Following the evolution of dislocation structures, the AE energy parameters were demonstrated to have a similar behavior in all investigated materials, i.e. the AE level increases sharply at the onset of plastic flow and then decays gradually during the uniform strain hardening stage. However, the absolute values of the AE amplitude and energy differ significantly depending on SFE. It was shown unambiguously that in contrast to expectations, the AE energy parameters reduce as the SFE value increases. This effect is discussed qualitatively in terms of the features of dislocation behavior, which are governed by the SFE value.Many questions remain open in the understanding the role of microstructural factors in the acoustic emission (AE) phenomenon occurring in deforming materials. A comparative analysis of AE time parameters in tensile testing of pure aluminum, copper, silver and nickel specimens having very different values of stacking fault energy (SFE) was undertaken in the present work to clarify the SFE effect on the AE signal. Continuous digital wideband recording was used for AE waveform registration, which offers the possibility to avoid the threshold discriminators and to analyze a continuous AE signal generated during plastic deformation mediated by dislocation mechanisms. The power of the AE signal were selected as the descriptive parameters. Following the evolution of dislocation structures, the AE energy parameters were demonstrated to have a similar behavior in all investigated materials, i.e. the AE level increases sharply at the onset of plastic flow and then decays gradually during the uniform strain hardening stage. However, the absolute values of the AE amplitude and energy differ significantly depending on SFE. It was shown unambiguously that in contrast to expectations, the AE energy parameters reduce as the SFE value increases. This effect is discussed qualitatively in terms of the features of dislocation behavior, which are governed by the SFE value.

References (29)

1.
C. Scruby, H. Wadley, J. E. Sinclair, Philosophical Magazine A 44 (2) (1981) 249 – 274.
2.
J. Baram, M. Rosen, Materials Science and Engineering 47 (3) (1981) 243 – 246.
3.
Z. I. Bibik, Fizika Metallov I Metallovedenie 63 (4) (1987) 811 – 815.
4.
Z. I. Bibik, Fizika Metallov I Metallovedenie 59 (4) (1985) 822 – 826.
5.
M. A. Krishtal, D. L. Merson, A. V. Katsman, M. A. Vyboyschchik, Phys Met Metallogr+ 66 (3) (1988) 169 – 175.
6.
F. P. Higgens, S. H. Carpenter, Acta Metallurgica 26 (1) (1978) 133 – 139.
7.
V. A. Strizhalo, M. V. Kalashnik, S. I. Likhatskii, I. N. Ponomarenko, V. I. Belogurova, Strength of Materials 15 (11) (1983) 1528 – 1531.
8.
A. Lazarev, A. Vinogradov, J. of Acoustic Emission 27 (2009) 144 – 156.
9.
P. Dobroň, J. Bohlen, F. Chmelík, P. Lukáč, D. Letzig, K. U. Kainer, Materials Science and Engineering A 462 (1–2) (2007) 307 – 310.
10.
M. Friesel, S. Carpenter, Metall and Mat Trans A 15 (10) (1984) 1849 – 1853.
11.
J. Dosoudil, Z. Trojanova, P. Lukac, F. Chmelik, Plasticity of Metals and Alloys — ISPMA 6 (1994) 401 – 406.
12.
A. Vinogradov, I. S. Yasnikov, Y. Estrin, Journal of Applied Physics 115 (23) (2014) 233506
13.
G. Gottstein, Physical foundations of materials science, Springer, Berlin; New York, 2004.
14.
J. Friedel, Dislocations, 1st English ed., Pergamon Press, Oxford, New York, 1964.
15.
H. Hatano, Journal of Applied Physics 48 (10) (1977) 4397 – 4399.
16.
S. Y. S. Hsu, K. Ono, H. Hatano, Materials Science and Engineering 38 (2) (1979) 187 – 191.
17.
C. R. Heiple, S. H. Carpenter, J. Acoustic Emission 6 (3) (1987) 177 – 237.
18.
M. A. Krishtal, D. L. Merson, M. A. Vyboishchik, Russ Metall Met (6) (1987) 86 – 88.
19.
U. F. Kocks, H. Mecking, Progress in Materials Science 48 (3) (2003) 171 – 273.
20.
A. Vinogradov, D. L. Merson, V. Patlan, S. Hashimoto, Materials Science and Engineering A 341 (1-2) (2003) 57 – 73.
21.
A. Vinogradov, M. Nadtochiy, S. Hashimoto, S. Miura, Materials Transactions JIM 36 (4) (1995) 496 – 503.
22.
A. Vinogradov, I. S. Yasnikov, Acta Materialia 70 (2014) 8 – 18.
23.
L. E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, London, UK, 1975.
24.
J. A. Venables, J. of Physics and Chemistry of Solids 25 (7) (1964) 685 – 692.
25.
M. Ahlers, Metallurgical Transactions 1 (9) (1970) 2415 – 2428.
26.
J. Christopher, B. K. Choudhary, Phil. Mag. 94 (26) (2014) 2992 – 3016.
27.
A. Rohatgi, K. S. Vecchio, Materials Science and Engineering: A 328 (1) (2002) 256 – 266.
28.
H. Parvin, M. Kazeminezhad, Comp. Mater. Science 95 (Suppl. C) (2014) 250 – 255.
29.
S. M. Copley, B. H. Kear, Acta Metallurgica 16 (2) (1968) 227-231.