S.V. Makarov ORCID logo , V.A. Plotnikov ORCID logo , B.F. Dem’yanov, A.I. Potekaev show affiliations and emails
Received: 21 August 2018; Revised: 21 September 2018; Accepted: 11 October 2018
This paper is written in Russian
Citation: S.V. Makarov, V.A. Plotnikov, B.F. Dem’yanov, A.I. Potekaev. WEAKLY STABLE STATE OF THE CRYSTAL LATTICE OF METALS AND ALLOYS. Letters on Materials, 2019, 9(1) 27-32
BibTex   https://doi.org/10.22226/2410-3535-2019-1-27-32


In the field of mechanical stresses, the state of the crystal lattice, called weakly stable, is the delocatization of atoms, characterized by a 20% shift from their equilibrium position.The state of the crystalline medium under the conditions of thermal fluctuations and mechanical stresses called weakly stable is determined by the displacement of atoms at a relative distance of 0.15 – 0.20 from the equilibrium positions. Such a displacement of the atoms follows the Lindemann criteria of the crystals melting, and the state of atomic ensemble can be described as delocalized one. The state of delocalization means the transition of the atom through the maximum of interaction force and is characterized by a strong anharmonic component of oscillations and softening of elastic modules. It is the state of delocalization of the atomic ensemble that is the weakly stable state of the crystal lattice. Weakly stable state of metal materials is manifested in a wide range of phenomena. These include abnormal reduction of elastic modules in thermoelastic martensitic transformations, second-order structural-phase transitions with the formation of long-period structures, abrupt plastic deformation, most clearly manifested in aluminium and its alloys, increasing the rate of deformation during creep in the ultrasonic field under static load. This paper presents the results of the analysis of the weakly stable state of the crystalline medium, especially in plastic deformation, that is, in the processes caused by the displacement of atoms from the equilibrium position. In these processes, the weakly stable state of the system can occur in the field of mechanical stresses and thermal fluctuations when the acoustic field of standing waves is applied, formed by primary acoustic emission signals, the combined action of which allows to overcome the potential barrier. In this state, the oscillatory displacement of the acoustic standing wave acts as a factor of self-organization, that is, it may be sufficient to activate the correlated dislocation slip, in fact, the athermal above-barrier slip in the weakly stable state of the crystal lattice.


1. I. Nakanishi. Softening of the lattice and the nature EMF. The shape memory effect in alloys. Moscow, Metallurgiya (1979) 155 p. (in Russian) [И. Никаниши. Смягчение решетки и природа ЭЗФ. Эффект памяти формы в сплавах. Москва, Металлургия (1979) 155 с.].
2. A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, V. V. Kulagina. Pretransitional weakly stable structures in nickelide titanium. Tomsk, NTL (2004) 296 p. (in Russian) [А. И. Потекаев, А. А. Клопотов, Э. В. Козлов, В. В. Кулагина. Слабоустойчивые предпереходные структуры в никелиде титана. Томск, НТЛ (2004) 296 с.].
3. K. Mukherjee, M. Chandrasekaran, F. Millo. Transformation of the pre-martensitic phase into martensitic associated with the shape memorization effect. The shape memory effect in alloys. Moscow, Metallurgiya (1979) p. 128 - 171. (in Russian) [К. Мукердж, М. Чандрэсикэрэн, Ф. Милилло. Превращение предмартенситной фазы в мартенсит, связанное с эффектом запоминания формы. Эффект памяти формы в сплавах. Москва, Металлургия (1979) с. 128 - 171.].
4. A. I. Potekaev, S. V. Dmitriev, V. V. Kulagin et al. Weakly stable long-period structures in metal systems. Tomsk, NTL (2010) 308 p. (in Russian) [А. И. Потекаев, С. В. Дмитриев, В. В. Кулагина и др. Слабоустойчивые длиннопериодические структуры в металлических системах. Томск, НТЛ (2010) 308 с.].
5. A. I. Potekaev, M. D. Starostenkov, V. V. Kulagina. Influence of point and planar defects on structural-phase transformations in the pre-transition weakly stable region of metal systems. Tomsk, NTL (2014) 488 p. (in Russian) [А. И. Потекаев, М. Д. Старостенков, В. В. Кулагина. Влияние точечных и планарных дефектов на структурно-фазовые превращения в предпереходной слабоустойчивой области металлических систем. Томск, НТЛ (2014) 488 с.].
6. S. V. Makarov, V. A. Plotnikov, A. I. Potekaev. Russian Physics Journal. 54 (3), 314 (2011).
7. V. R. Regel, A. I. Slutsker, E. V. Tomashevsky. Kinetic nature of strength of solids. Moscow, Nauka (1974) 560 p. (in Russian) [В. Р. Регель, А. И. Слуцкер, Э. В. Томашевский. Кинетическая природа прочности твердых тел. Москва, Наука (1974) 560 с.].
8. A. I. Slutsker, A. I. Mihailin, I. A. Slutsker. Phys.-Usp. 37, 335 (1994). Crossref
9. G. M. Poletaev, M. D. Starostenkov. Physics of the Solid State, 51 (4) 686 (2009). (in Russian) [Г. М. Полетаев, М. Д. Старостенков. ФТТ, 51 (4) 686 (2009).].
10. M. S. Feldman, G. M. Poletaev, R. Y. Rakitin, M. D. Starostenkov. Fundamental problems of modern materials science. 2 (1), 64 (2005) (in Russian) [М. С. Аксенов, Г. М. Полетаев, Р. Ю. Ракитин, М. Д. Старостенков. Фундаментальные проблемы современного материаловедения. 2 (1), 64 (2005).].
11. A. I. Slutsker. Physics of the Solid State. 46 (9) 1606 (2004) (in Russian) [А. И. Слуцкер. ФТТ. 46 (9) 1606 (2004).].
12. M. M. Myshlyaev. Creep of polygonized structures. Imperfections of the crystal structure and martensitic transformations. Moscow, Nauka (1972), pp. 194 - 234. (in Russian) [М. М. Мышляев. Ползучесть полигонизованных структур. Сб. Несовершенства кристаллического строения и мартенситные превращения. Москва, Наука (1972), с. 194 - 234.].
13. V. V. Rybin. Large plastic deformation and fracture of metals. Moscow, Metallurgiya (1986), 224 p. (in Russian) [В. В. Рыбин Большие пластические деформации и разрушение металлов. Москва, Металлургия (1986) 224 с.].
14. L. B. Zuev, V. I. Danilov, V. V. Gorbatenko. Technical Physics. 65 (5) 91 (1995). (in Russian) [Л. Б. Зуев, В. И. Данилов, В. В. Горбатенко. ЖТФ. 65 (5) 91 (1995).].
15. G. A. Malygin. Phys.-Usp., 42 887 (1999).
16. V. E. Panin, V. A. Likhachev, Yu. V. Grinyaev. Structural levels of deformation of solids. Novosibirsk, Nauka (1985) 230 p. (in Russian) [В. Е. Панин, В. А. Лихачев, Ю. В. Гриняев. Структурные уровни деформации твердых тел. Новосибирск, Наука (1985) 230 с.].
17. N. А. Koneva, L. I. Trishkina, A. I. Potekaev, E. V. Kozlov. Structural-phase transformations in weakly stable states of metallic systems under thermal and force effects. Tomsk, NTL (2015) 344 p. (in Russian) [Н. А. Конева, Л. И. Тришкина, А. И. Потекаев, Э. В. Козлов. Структурно-фазовые превращения в слабоустойчивых состояниях металлических систем при термосиловом воздействии. Томск, НТЛ (2015) 344 с.].
18. V. N. Bovenko. Bulletin of the Academy of Sciences of the USSR. Metals. 1, 129 (1984). (in Russian) [В. Н. Бовенко. Изв. АН СССР. Металлы. 1, 129 (1984).].
19. V. A. Plotnikov V. A., Makarov. Russian Physics Journal. 48 (11), 1142 (2005).
20. V. A. Plotnikov, S. V. Makarov. Deformation and destruction of materials. 3, 27 (2005). (in Russian) [В. А. Плотников, С. В. Макаров. Деформация и разрушение материалов. 3, 27 (2005).].
21. V. P. Lebedev, V. S. Krylov, S. V. Lebedev, S. V. Savic. Physics of the Solid State. 49 (11), 1994 (2007). (in Russian) [В. П. Лебедев, В. С. Крыловский, С. В. Лебедев, С. В. Савич. ФТТ. 49 (11), 1994 (2007).].
22. N. N. Peschanskaya, V. V., Shpeisman, A. B. Sinani, B. I. Smirnov. Physics of the Solid State. 46 (11), 1991 (2004). (in Russian) [Н. Н. Песчанская, В. В. Шпейзман, А. Б. Синани, Б. И. Смирнов. ФТТ. 46 (11), 1991 (2004).].
23. M. A. Lebyodkin, I. V. Shashkov, T. A. Lebedkina and V. S. Gornakov. Materials Science Forum. 783 - 786, 204 (2014).
24. S. V. Makarov, V. A. Plotnikov, A. I. Potekaev. Russian Physics Journal. 54 (3), 314 (2011).
25. S. V. Makarov, V. A. Plotnikov, A. I. Potekaev. Russian Physics Journal. 57 (4), 436 (2014).
26. J. Robinson. International Materials Reviews. 39, 217 (1994).
27. Y. Estrin, L. P. Kubin. Materials Science and Engineering, A. 137, 125 (1991).
28. M. M. Krishtal. The Physics of Metals and Metallography. 75 (5), 480 (1993).
29. M. M. Krishtal, D. L. Merson. The Physics of Metals and Metallography. 81 (1), 104 (1996).
30. A. A. Shibkov, A. E. Zolotov, M. F. Zheltov, M. F. Hasanov, A. A. Denisov. Physics of the Solid State. 56 (5), 848 (2014). (in Russian) [А. А. Шибков, А. Е. Золотов, М. Ф. Желтов, М. Ф. Гасанов, А. А. Денисов. ФТТ. 56 (5), 848 (2014).].
31. V. G. Badalyan, N. N. Vorontsov, V. F. Kazantsev et al. The Physics of Metals and Metallography. 54 (6), 1191 (1982). (in Russian) [В. Г. Бадалян, Н. Н. Воронцов, В. Ф. Казанцев и др. ФММ. 54 (6), 1191 (1982).].
32. V. F. Kazantsev, V. G. Badalyan. The Physics of Metals and Metallography. 55 (1), 191 (1983). (in Russian) [В. Ф. Казанцев, В. Г. Бадалян. ФММ. 55 (1), 191 (1983).].
33. S. A. Zhernov, I. F. Omelyanenko, A. F. Sirenko. The Physics of Metals and Metallography. 58 (3), 589 (1984). (in Russian) [С. А. Жернов, И. Ф. Омельяненко, А. Ф. Сиренко. ФММ. 58 (3), 589 (1984).].
34. L. Hausson, F. Tholen. Ultrasonics. March, 57 (1978).
35. V. I. Ushakov, I. F. Omelyanenko, A. F. Sirenko. The Physics of Metals and Metallography. 59 (5), 584 (1985). (in Russian) [В. И. Ушаков, И. Ф. Омельяненко, А. Ф. Сиренко. ФММ. 59 (5), 584 (1985).].
36. M. M. Myshlyaev, V. V., Shpeisman, V. V. Klubovich, M. M. Kulak, G. Liu. Physics of the Solid State. 57 (10), 1986 (2015). (in Russian) [М. М. Мышляев, В. В. Шпейзман, В. В. Клубович, М. М. Кулак, Г. Лю. ФТТ. 57 (10), 1986 (2015).].
37. S. V. Makarov, V. A. Plotnikov, A. I. Potekaev, L. S. Grinkevich. Russian Physics Journal. 57 (12), 1676 (2015).
38. S. V. Makarov, V. A. Plotnikov, A. I. Potekaev. Russian Physics Journal. 57 (7), 950 (2014).
39. E. V. Kozlov, L. E. Popov, M. D. Starostenkov. Russian Physics Journal. 15 (3), 107 (1972). (in Russian) [Э. В. Козлов, Л. Е. Попов, М. Д. Старостенков. Изв. ВУЗов. Физика. 15 (3), 107 (1972).].
40. B. F. Demyanov, A. S. Dragunov, A. V. Weckman. Bulletin of the Altai State University. 1 / 2 (65), 158 (2010). (in Russian) [Б. Ф. Демьянов, А. С. Драгунов, А. В. Векман. Известия Алтайского государственного университета. 1 / 2 (65), 158 (2010)].
41. A. V. Weckman, B. F. Demyanov, A. S. Dragunov. The Physics of Metals and Metallography. 116 (6), 586 (2015).
42. F. A. Lindemann. Phys. Z. 11, 609 (1911).
43. M. N. Magomedov. Study of interatomic interaction, vacancy formation and self-diffusion in crystals. Moscow, Fizmatlit (2010) 544 p. (in Russian) [М. Н. Магомедов. Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. Москва, Физматлит (2010) 544 с.].
44. D.S. Sanditov. Journal of Experimental and Theoretical Physics. 142(1), 123 (2012). (in Russian) [Д.С. Сандитов. ЖЭТФ. 142(1), 123 (2012).].
45. E.E. Slyadnikov. Physics of the Solid State. 46(6), 1065 (2004). (in Russian) [Е.Е. Слядников. ФТТ. 46(6), 1065 (2004).].
46. O. Guerrero, M. Marucho. Journal of Materials Science and Engineering B. 3, 153 (2013).