Acoustic emission study of the kinetics of kink bands in the LPSO structure

A.Y. Vinogradov, E.V. Vasilev, A.I. Brilevsky ORCID logo , D.L. Merson, K.K. Kudasheva show affiliations and emails
Accepted  21 November 2019
Citation: A.Y. Vinogradov, E.V. Vasilev, A.I. Brilevsky, D.L. Merson, K.K. Kudasheva. Acoustic emission study of the kinetics of kink bands in the LPSO structure. Lett. Mater., 2019, 9(4) 504-508
BibTex   https://doi.org/10.22226/2410-3535-2019-4-504-508

Abstract

In the alloy containing the LPSO phase, using the acoustic emission method, it was possible to identify and trace the kinetics of the development of three simultaneously occurring accommodative deformation mechanisms: basic dislocation slip, nucleation and growth of discharge bands.Modern magnesium alloys with the so-called long-period stacking ordered (LPSO) structure possess not only a unique microstructure, but also an excellent set of functional properties (strength, ductility, fatigue and corrosion resistance, thermal stability) that are directly or indirectly associated with the effect of the LPSO phase. In particular, the features of the nano-composite ordering of the LPSO structure govern virtually all aspects of the mechanical behaviour of advanced alloys with such a particular structure. A characteristic feature of their plastic deformation is widely known as the formation of deformation kink bands, the behaviour of which both individually and in the interaction with each other and with lattice dislocations is not well understood. In the present work, it is proposed to use the method of acoustic emission (AE) to study these processes in real-time. The AE method revealed the presence of three simultaneously existing accommodation deformation mechanisms in model Mg-Y-Zn directly solidified crystals with LPSO structure — namely, basic dislocation slip, nucleation and growth of fault bands. Each of these processes generates a specific AE, the features of which are revealed using the original method of statistical cluster analysis of events by their power spectral density function. The growth of deformation kink bands, in contrast to the growth of twins, appears as a large-scale process of defect motion, accompanied by a reorientation of the crystal with the corresponding specific AE and activation of new channels for the basal dislocation slip, which, in the end, enables high plastic properties of the modern alloys with the LPSO structure.

References (25)

1. E. Abe, Y. Kawamura, K. Hayashi, A. Inoue. Acta Materialia. 50 (15), 3845 (2002). Crossref
2. Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto. Materials Transactions. 42 (7), 1172 (2001). Crossref
3. Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki. Scripta Materialia. 55 (5), 453 (2006). Crossref
4. M. Yamasaki, S. Izumi, Y. Kawamura, H. Habazaki. Applied Surface Science. 257 (19), 8258 (2011). Crossref
5. X. H. Shao, Z. Q. Yang, X. L. Ma. Acta Materialia. 58 (14), 4760 (2010). Crossref
6. K. Hagihara, N. Yokotani, Y. Umakoshi. Intermetallics. 18 (2), 267 (2010). Crossref
7. K. Hagihara, A. Kinoshita, Y. Fukusumi, M. Yamasaki, Y. Kawamura. Materials Science and Engineering: A. 560, 71 (2013). Crossref
8. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H. Y. Yasuda, Y. Umakoshi. Acta Materialia. 58 (19), 6282 (2010). Crossref
9. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H. Y. Yasuda, Y. Umakoshi. Intermetallics. 18 (5), 1079 (2010). Crossref
10. K. Hagihara, T. Okamoto, H. Izuno, M. Yamasaki, M. Matsushita, T. Nakano, Y. Kawamura. Acta Materialia. 109, 90 (2016). Crossref
11. K. Hagihara, M. Yamasaki, M. Honnami, H. Izuno, M. Tane, T. Nakano, Y. Kawamura. Philosophical Magazine. 95 (2), 132 (2015). Crossref
12. Y. Muto, T. Shiraiwa, M. Enoki. Materials Science and Engineering: A. 689, 157 (2017). Crossref
13. R. Matsumoto, M. Uranagase, N. Miyazaki. Materials Transactions. 54 (5), 686 (2013). Crossref
14. A. Vinogradov, D. Orlov, A. Danyuk, Y. Estrin. Acta Materialia. 61 (6), 2044 (2013). Crossref
15. A. Vinogradov, K. Máthis. JOM. 68 (12), 3057 (2016). Crossref
16. M. Tane, Y. Nagai, H. Kimizuka, K. Hagihara, Y. Kawamura. Acta Materialia. 61 (17), 6338 (2013). Crossref
17. M. Seleznev, A. Vinogradov. Review of Scientific Instruments. 85 (7), 076103 (2014). Crossref
18. A. Vinogradov, E. Vasilev, M. Seleznev, K. Máthis, D. Orlov, D. Merson. Materials Letters. 183, 417 (2016). Crossref
19. E. Pomponi, A. Vinogradov. Mech. Syst. Signal Proc. 40 (2), 791 (2013). Crossref
20. S. Yoshimoto, M. Yamasaki, Y. Kawamura. Materials Transactions. 47 (4), 959 (2006). Crossref
21. A. Vinogradov, M. Nadtochiy, S. Hashimoto, S. Miura. Materials Transactions JIM. 36 (4), 496 (1995). Crossref
22. T. Matsumoto, M. Yamasaki, K. Hagihara, Y. Kawamura. Acta Materialia. 151, 112 (2018). Crossref
23. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H. Y. Yasuda, Y. Umakoshi. Transactions of Nonferrous Metals Society of China. 20 (7), 1259 (2010). Crossref
24. M. Y. Gutkin, K. N. Mikaelyan, A. E. Romanov, P. Klimanek. Physica Status Solidi (A) Applied Research. 193 (1), 35 (2002).
25. E. Abe, Y. Kawamura, K. Hayashi, A. Inoue. Acta Materialia. 50 (15), 3845 (2002). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - 3.3881.2017/4.6