Effect of deformation processing of the dilute Mg-1Zn-0.2Ca alloy on the mechanical properties and corrosion rate in a simulated body fluid

D.L. Merson, A.I. Brilevsky ORCID logo , P.N. Myagkikh ORCID logo , M.V. Markushev, A. Vinogradov show affiliations and emails
Received: 29 March 2020; Revised: 14 April 2020; Accepted: 14 April 2020
Citation: D.L. Merson, A.I. Brilevsky, P.N. Myagkikh, M.V. Markushev, A. Vinogradov. Effect of deformation processing of the dilute Mg-1Zn-0.2Ca alloy on the mechanical properties and corrosion rate in a simulated body fluid. Lett. Mater., 2020, 10(2) 217-222
BibTex   https://doi.org/10.22226/2410-3535-2020-2-217-222


Structure and corrosion damage in a biologically active medium of a bioresorbable magnesium alloyMagnesium and its alloys have several competitive advantages due to their low density and the highest specific strength among modern structural metallic materials. However, the relatively low ductility and poor corrosion resistance hinder their broader use in industry. Unlike many engineering applications, the ability of magnesium alloys to dissolve in chlorine-containing media is attractive for their applications as temporary implants. In the present work, the influence of thermomechanical processing on mechanical properties and corrosion resistance of the alloy Mg-1Zn-0.2Ca intended for biomedical applications is investigated. The low content of alloying elements permitted grain boundary hardening to be realised to a large extent during deformation processing. Severe plastic deformation through the multi-axis isothermal forging at relatively high homological temperatures in combination with isothermal rolling gave rise to the significantly refined to the micrometre scale homogeneous microstructure with an excellent balance of the tensile strength and ductility (the yield stress and ultimate tensile strength are in excess of 210 and 260 MPa, respectively, and the elongation at break is over 20 %) and corrosion resistance in the simulated body fluid (SBF) in vitro. With the pH value of the SBF maintained at 7.4 throughout the test, the corrosion rate assessed by the hydrogen evolution and gravimetric methods was found to be nearly constant without signatures of saturation for the deformation-processed specimens. The rate of hydrogen desorption of 0.5 ml / cm2 / day was found to be far below the amount that could be accommodated by the human body without adverse effects.

References (32)

1. F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend. Current Opinion in Solid State and Materials Science. 12, 63 (2008). Crossref
2. M. Moravej, D. Mantovani. International Journal of Molecular Sciences.12, 4250 (2011). Crossref
3. A. Vinogradov, V. N. Serebryany, S. V. Dobatkin. Advanced Engineering Materials. 20, 1700785 (2018). Crossref
4. Y. Estrin, A. Vinogradov. Acta Materialia. 61, 782 (2013). Crossref
5. A. Atrens, G.-L. Song, M. Liu, Z. Shi, F. Cao, M. S. Dargusch. Advanced Engineering Materials. 17, 400 (2015). Crossref
6. H. Wang, Y. Estrin, H. Fu, G. Song, Z. Zúberová. Advanced Engineering Materials. 9, 967 (2007). Crossref
7. K. D. Ralston, N. Birbilis, C. H. J. Davies. Scripta Materialia. 63, 1201 (2010). Crossref
8. Z. Pu, G. L. Song, S. Yang, J. C. Outeiro, O. W. Dillon, D. A. Puleo, I. S. Jawahir. Corrosion Science. 57, 192 (2012). Crossref
9. N. N. Aung, W. Zhou. Corrosion Science. 52, 589 (2010). Crossref
10. M. Alvarez-Lopez, M. D. Pereda, J. A. del Valle, M. Fernandez-Lorenzo, M. C. Garcia-Alonso, O. A. Ruano, M. L. Escudero. Acta Biomaterialia. 6, 1763 (2010). Crossref
11. N. Birbilis, K. D. Ralston, S. Virtanen, H. L. Fraser, C. H. J. Davies. Corrosion Engineering, Science and Technology. 45, 224 (2010). Crossref
12. P. Minárik, R. Král, M. Janeček, F. Chmelík, B. Hadzima. Acta Physica Polonica A. 128, 772 (2015). Crossref
13. D. Orlov, K. D. Ralston, N. Birbilis, Y. Estrin. Acta Materialia. 59, 6176 (2011). Crossref
14. E. V. Parfenov, O. B. Kulyasova, V. R. Mukaeva, B. Mingo, R. G. Farrakhov, Y. V. Cherneikina, A. Yerokhin, Y. F. Zheng, R. Z. Valiev. Corrosion Science. 163, 108303 (2020). Crossref
15. N. S. Martynenko, E. A. Lukyanova, V. N. Serebryany, M. V. Gorshenkov, I. V. Shchetinin, G. I. Raab, S. V. Dobatkin, Y. Estrin. Materials Science and Engineering A. 712, 625 (2018). Crossref
16. D. Song, A. Ma, J. Jiang, P. Lin, D. Yang, J. Fan. Corrosion Science. 52, 481 (2010). Crossref
17. D. Song, A. B. Ma, J. H. Jiang, P. H. Lin, D. H. Yang, J. F. Fan.Corrosion Science. 53, 362 (2011). Crossref
18. J. Hofstetter, E. Martinelli, S. Pogatscher, P. Schmutz, E. Povoden-Karadeniz, A. M. Weinberg, P. J. Uggowitzer, J. F. Löffler. Acta Biomaterialia. 23, 347 (2015). Crossref
19. D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev. Letters on Materials. 1(4), 213 (2011). (in Russian) [Д. Р. Нугманов, О. Ш. Ситдиков, М. В. Маркушев. Письма о материалах. 1 (4), 213 (2011).]. Crossref
20. M. V. Markushev, D. R. Nugmanov, O. Sitdikov, A. Vinogradov. Materials Science and Engineering A. 709, 330 (2018). Crossref
21. G. Song, A. Atrens, D. StJohn. An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys. In: Essential Readings in Magnesium Technology (Ed. by S. N. Mathaudhu, A. A. Luo, N. R. Neelameggham, E. A. Nyberg, W. H. Sillekens). Springer (2016) pp. 565 - 572.
22. R. Kaibyshev. Dynamic recrystallization in magnesium alloys. In: Advances in Wrought Magnesium Alloys. Woodhead Publishing (2012) pp. 186 - 225. Crossref
23. A. Galiyev, R. Kaibyshev, G. Gottstein. Acta Materialia. 49, 1199 (2001). Crossref
24. H. R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M. A. M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj. Materials and Corrosion. 65, 1178 (2014). Crossref
25. B. Zhang, Y. Hou, X. Wang, Y. Wang, L. Geng. Materials Science and Engineering C. 31, 1667 (2011). Crossref
26. A. Vinogradov, E. Vasilev, M. Linderov, D. Merson.Metals. 6, 304 (2016). Crossref
27. J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karadeniz, S. Pogatscher, P. J. Uggowitzer, J. F. Löffler. Acta Materialia. 98, 423 (2015). Crossref
28. Y.-K. Kim, K.-B. Lee, S.-Y. Kim, K. Bode, Y.-S. Jang, T.-Y. Kwon, M. H. Jeon, M.-H. Lee. Science and Technology of Advanced Materials. 19, 324 (2018). Crossref
29. H. R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, R. Ebrahimi-Kahrizsangi, M. Medraj. Ceramics International. 40, 7971 (2014). Crossref
30. C.-Y. Zhang, R.-C. Zeng, C.-L. Liu, J.-C. Gao. Surface and Coatings Technology. 204, 3636 (2010). Crossref
31. S. Johnston, Z. Shi, A. Atrens. Corrosion Science. 101, 182 (2015). Crossref
32. E. Merson, P. Myagkikh, V. Poluyanov, D. Merson, A. Vinogradov. Materials Science and Engineering A. 748, 337 (2019). Crossref

Similar papers