Effect of thermomechanical treatment on the microstructure and mechanical properties of a nickel base superalloy heavily alloyed with substitution elements

V.M. Imayev, S.K. Mukhtarov, A.V. Logunov, A.A. Ganeev, R.V. Shakhov, L.R. Shaikhutdinova, R.M. Imayev show affiliations and emails
Received 14 October 2019; Accepted 27 October 2019;
Citation: V.M. Imayev, S.K. Mukhtarov, A.V. Logunov, A.A. Ganeev, R.V. Shakhov, L.R. Shaikhutdinova, R.M. Imayev. Effect of thermomechanical treatment on the microstructure and mechanical properties of a nickel base superalloy heavily alloyed with substitution elements. Lett. Mater., 2019, 9(4) 465-469
BibTex   https://doi.org/10.22226/2410-3535-2019-4-465-469

Abstract

The first part of the picture illustrates three dimension types of the γ' phase after TMT and ageing. The second part is the EBSD orientation map showing recrystallized structure after TMT and ageing.The work has been devoted to a study of the microstructure and mechanical properties of a novel heavily alloyed nickel base superalloy in cast and heat-treated (HT) and thermomechanically treated (TMT) conditions. The cast condition subjected to HT, including homogenization annealing, solid solution treatment and ageing, was characterized by a coarse γ grain size and uniformly distributed γ' precipitates with a size dγ' = 0.1– 0.25 μm. TMT included unidirectional two-step forging in a thick-walled can made of stainless steel, which provided high quasi-hydrostatic pressure during forging, and intermediate recrystallization annealing at subsolvus temperatures. The TMT condition was aged. TMT led to the uniform development of recrystallization processes and the formation of predominantly recrystallized microstructure with a γ grain size dγ = 2 – 50 μm. Non-recrystallized areas with up to 100 μm in size were also observed. After TMT and ageing, the microstructure contained mostly dispersed γ' precipitates with a size of dγ' = 0.1– 0.3 μm. Tensile tests revealed that the strength properties in the TMT condition were by 20 – 70 % higher than in the cast and HT condition. The TMT condition also showed an appreciably higher ductility than the HT condition. The following tensile properties were obtained at room temperature: σUTS / σ0.2 =1533 / 1083 MPa, δ =11 % after TMT and ageing, and σUTS / σ0.2 =1015 –1030 / 900 MPa, δ = 4.5 – 5.2 % after HT. Higher tensile properties after TMT are explained by the γ grain refinement, the high γ' phase content, and the solid solution strengthening due to heavy alloying with substitution elements. At the same time, the presence of topologically close-packed phases probably reduced the mechanical properties.

References (12)

1. R. C. Reed. The superalloys: Fundamentals and Applications. Cambridge University Press (2006) 372 p. Crossref
2. M. C. Kushan, S. C. Uzgur, Y. Uzunonat, F. Diltemiz. Recent Advances in Aircraft Technology. Croatia, InTech Rijeka (2012) pp. 75 - 96.
3. O. A. Kaibyshev, F. Z. Utyashev. Sverkhplastichnost', izmel'cheniye mikrostruktury i obrabotka trudnodeformiruyemykh splavov. Moscow, Nauka (2002) 438 p. (in Russian) [О.А. Кайбышев, Ф.З. Утяшев. Сверхпластичность, измельчение микроструктуры и обработка труднодеформируемых сплавов. Москва, Наука (2002) 438 с.].
4. A. V. Logunov. Zharoprochnyye nikelevyye splavy dlya lopatok i diskov gazovykh turbin. Rybinsk, LLC Publishing House “Gazoturbinnyye tekhnologii” (2017) 854 p. (in Russian) [А.В. Логунов. Жаропрочные никелевые сплавы для лопаток и дисков газовых турбин. Рыбинск: ООО «Издательский дом «Газотурбинные технологии» (2017) 854 с.].
5. R. A. Hobbs, S. Tin, C. M. F. Rae. Metall. Mater. Trans. A. 36, 2761 (2005). Crossref
6. S. Tin, L. Zhang, R. A. Hobbs, A.-C. Yeh, C. M. F. Rae, B. Broomfield. In: Superalloys 2008 (Ed. by R. C. Reed, P. Caron, T. Gabb, E. Huron, S. Woodare). TMS, Warrendale, Seven Springs, PA, USA (2008) pp. 81 - 90.
7. R. V. Shakhov, A. A. Ganeev, Sh. Kh. Mukhtarov, A. V. Logunov, V. M. Imayev, R. M. Imayev. IOP Conference Series: Mater. Sci. & Eng. 447 (2018) 012045. Crossref
8. R. V. Shakhov, A. A. Ganeev, Sh. Kh. Mukhtarov, A. V. Logunov. Letters on Materials. 8 (4), 494 (2018). Crossref
9. R. M. Nazarkin, V. G. Kolodochkina, O. G. Ospennikova, M. R. Orlov. Electronic scientific journal “Proceedings of VIAM”. 12, 22 (2015). (in Russian) [Р.М. Назаркин, В.Г. Колодочкина, О.Г. Оспенникова, М.Р. Орлов. Электронный научный журнал “ТРУДЫ ВИАМ”. 12, 22 (2015).].
10. T. Sugui, W. Minggang, L. Tang, Q. Benjiang, X. Jun. Mater. Sci. Eng. A. 527, 5444 (2010). Crossref
11. Sh. Kh. Mukhtarov, V. M. Imayev, A. V. Logunov, Yu. N. Shmotin, A. M. Mikhailov, R. A. Gaisin, R. V. Shakhov, A. A. Ganeev, R. M. Imayev. Mater. Sci. & Technol. 35 (13), 1605 (2019). Crossref
12. T. Khan, J. F. Stohr, H. Bibring. In: Superalloys 1980 (Ed. by J. K. Tien, S. T. Wlodek, H. III Morrow, M. Gell, G. E. Maurer). ASM, Champion, PA, USA (1980) pp. 531- 540. Crossref

Similar papers

Funding

1. The present work was supported by the Russian Science Foundation - Grant No. 18-19-00594