Microstructure and mechanical properties of the Inconel 718 superalloy manufactured by selective laser melting

K.S. Mukhtarova ORCID logo , R.V. Shakhov, S.K. Mukhtarov ORCID logo , V.V. Smirnov, V.M. Imayev show affiliations and emails
Received 21 October 2019; Accepted 28 October 2019;
Citation: K.S. Mukhtarova, R.V. Shakhov, S.K. Mukhtarov, V.V. Smirnov, V.M. Imayev. Microstructure and mechanical properties of the Inconel 718 superalloy manufactured by selective laser melting. Lett. Mater., 2019, 9(4) 480-484
BibTex   https://doi.org/10.22226/2410-3535-2019-4-480-484

Abstract

Microstructure of Inconel 718 manufactured by SLM and subjected to heat treatmentThe work is devoted to the study of the microstructure and mechanical properties of the nickel base superalloy Inconel 718 manufactured by selective laser melting (SLM). Multiple cycles of heating and cooling during SLM led to the formation of a complex microheterogeneous microstructure. The microstructure of the superalloy manufactured by SLM consisted of elongated γ grains with a transversal size of 10 –100 μm and a longitudinal size of 50 – 300 μm, which in its turn consisted of columnar and equiaxed subgrains. Stable and metastable precipitates of the δ-Ni3Nb and γ''-Ni3Nb phases, carbides and probably oxides, were detected along the subboundaries. The standard heat treatment of the superalloy manufactured by SLM resulted in a partial dissolution of the δ phase and the metastable γ'' phase during solid solution treatment and precipitation of the dispersed metastable γ'' phase during ageing. The microstructure characterization performed by electron backscatter diffraction technique (EBSD analysis) revealed that the size and elongated form of the γ grains was not changed after the heat treatment, the size of the subgrains slightly increased, the fraction of low-angle boundaries (subboundaries) decreased, and the fraction of high-angle grain boundaries increased. Tensile tests were carried out at T = 20 – 700°C for the superalloy samples subjected to standard heat treatment. The tensile direction was parallel to the building direction. The tensile tests showed that the superalloy manufactured by SLM exceeded the requirements of the AMS 5662 certificate for the superalloy Inconel 718 in a hot forged condition subjected to standard heat treatment.

References (20)

1. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang. Progr. Mater. Sci. 92, 112 (2018). Crossref
2. J. P. Oliveira, T. G. Santos, R. M. Miranda. Progr. Mater. Sci. 107, 100590 (2020). Crossref
3. T. Raza, J. Andersson, L.-E. Svensson. Proc. Manufact. 25, 450 (2018). Crossref
4. X. Gong, X. Wang, V. Cole, Z. Jones, K. Cooper, K. Chou. In: Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference. Charlotte, North Carolina, USA (2015) p. 1.
5. DMLS. Direct Metal Laser Sintering https://www.crpmeccanica.com/dmls-direct-metal-laser-sintering.
6. C. Körner. International Materials Reviews. 61 (5), 361 (2016). Crossref
7. W. M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, V. Hansen. Mater. Sci. Eng. A. 689, 220 (2017). Crossref
8. Y.-L. Kuo, K. Kakehi. Metals. 7, 367 (2017). Crossref
9. L. E. Murr, E. Martinez, K. N. Amato, S. M. Gaytan, J. Hernandez, D. A. Ramirez, P. W. Shindo, F. Medina, R. B. Wicker. J. Mater. Res. Technol. 1, 42 (2012). Crossref
10. X. Wang, K. Chou. Inter. J. Adv. Manuf. Technol. 100, 2147 (2019). Crossref
11. R. Konečná, L. Kunz, G. Nicoletto, A. Bača. Frattura ed Integrità Strutturale. 35, 31 (2016). Crossref
12. C. A. Wade, G. Bertali, T. Withaar, D. Foord, B. Freitag, G. Burke. In: The 16th European Microscopy Congress, Lyon, France (2016) p. 223. Crossref
13. Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, J. Lin. Optics & Laser Technol. 75, 197 (2015). Crossref
14. M. C. Karia, M. A. Popat, K. B. Sangani. AIP Conference Proceedings. 1859, 020013 (2017). Crossref
15. T. Trosch, J. Strößner, R. Völkl, U. Glatzel. Mater Letters. 164, 428 (2016). Crossref
16. T. Bauer, K. Dawson, A. B. Spierings, K. Wegener. In: Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium. Austin, TX, USA (2015) p. 813. Crossref
17. C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, S. L. Sing. Appl. Phys. Reviews. 2, 041101 (2015). Crossref
18. A. A. Popovich, V. Sh. Sufiiarov, I. A. Polozov, E. V. Borisov. Key Eng. Mater. 651 - 653, 665 (2015). Crossref
19. S. Raghavan, B. Zhang, P. Wang, C.-N. Sun, M. L. S. Nai, T. Li. Mater. Manufact. Proc. 32 (14), 1588 (2017). Crossref
20. C. T. Sims, N. S. Stoloff, W. C. Hagel. Superalloys II. New York, John Wiley & Sons (1987) 615 p.

Similar papers

Funding

1. Institute for Metals Superplasticity Problems, Russian Academy of Sciences - AAAA-A17-117041310215-4