On the corrosion of ZK60 magnesium alloy after severe plastic deformation

D. Merson, E. Vasilev, M. Markushev, A. Vinogradov
Received: 13 October 2017; Accepted: 23 October 2017
Citation: D. Merson, E. Vasilev, M. Markushev, A. Vinogradov. On the corrosion of ZK60 magnesium alloy after severe plastic deformation. Letters on Materials, 2017, 7(4) 421-427
BibTex   DOI: 10.22226/2410-3535-2017-4-421-427

Abstract

The influence of the microstructure, its heterogeneity, grain size and distribution of secondary phases on the corrosion rate is demonstrated. The microstructure refinement by the severe plastic deformation leading to the increasing fraction of grain boundaries, promotes the formation of a reasonably uniform protective layer, reduces the inhomogeneity of the second phases and increases the overall corrosion resistance of the ZK60 alloy.Magnesium and its alloys are promising materials for the surgical implants due to their exceptional mechanical properties, biocompatibility and biodegradability. Binary Mg-Zn and ternary Mg-Zn-Zr alloys are the most obvious candidates for further design of biomaterials. However, they have to meet many requirements, including corrosion performance. In this work, we demonstrate that the corrosion resistance of Mg-6Zn-0.5Zr alloy ZK60 can be controlled to a large extent by the thermomechanical treatment involving hot severe plastic deformation (SPD). The multi-axial isothermal forging (MIF) is employed to deform the alloy ZK60 to different strains at 400°C and 300°C. The influence of the microstructure, its heterogeneity, grain size and distribution of second phases on the corrosion rate is demonstrated. It was found, that microstructure refinement by hot SPD leads to the increasing fraction of grain boundaries, promotes the formation of a reasonably uniform protective layer, reduces the inhomogeneity of the second phases and increases the overall corrosion resistance of the investigated ZK60 alloy. The homogeneous microstructure after multi-axial isothermal forging plays an important role in the corrosion performance since bimodal grain boundary structure can lead to large differences in the driving force for oxidation at different points of the material, and, as a consequence, to the difference in the spatial properties and the heterogeneity of the protective oxide film. With the reasonable corrosion performance and excellent mechanical properties, the fine-grained alloy ZK60 manufactured by hot two-step MIF processing has a great potential for bio-medical applications as a material for bio-resorbable implants or vascular stents.

References (43)

1.
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, H. Windhagen, Biomaterials 26 (2005) 3557 – 3563. DOI: 10.1016/j.biomaterials.2004.09.049
2.
H. H. Uhlig, R. W. Revie, Corrosion and corrosion control: an introduction to corrosion science and engineering, 3rd ed., Wiley, New York; Chichester, 1985.
3.
K. U. Kainer, Magnesium alloys and technology, DGM: Wiley-VCH, Weinheim, 2003.
4.
W. Xu, N. Birbilis, G. Sha, Y. Wang, J. E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14 (2015) 1229 – 1235. DOI: 10.1038/nmat4435
5.
N. T. Kirkland, J. Lespagnol, N. Birbilis, M. P. Staiger, Corr. Sci. 52 (2010) 287 – 291. DOI: 10.1016/j.corsci.2009.09.033
6.
P. Doležal, J. Zapletal, S. Fintová, Z. Trojanová, M. Greger, P. Roupcová, T. Podrábský, Materials 9 (2016) 880. DOI: 10.3390/ma9110880
7.
E. Vasilev, M. Linderov, D. Nugmanov, O. Sitdikov, M. Markushev, A. Vinogradov, Metals 5 (2015) 2316. DOI: 10.3390/met5042316
8.
H. S. Brar, J. P. Ball, I. S. Berglund, J. B. Allen, M. V. Manuel, Acta Biomater. 9 (2013) 5331 – 5340. DOI: 10.1016/j.actbio.2012.08.004
9.
M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59 (2011) 3646 – 3658. DOI: 10.1016/j.actamat.2011.02.038
10.
M. Yamasaki, N. Hayashi, S. Izumi, Y. Kawamura, Corr. Sci. 49 (2007) 255 – 262. DOI: 10.1016/j.corsci.2006.05.017
11.
J. Hofstetter, E. Martinelli, A. M. Weinberg, M. Becker, B. Mingler, P. J. Uggowitzer, J. F. Löffler, Corr. Sci. 91 (2015) 29 – 36. DOI: 10.1016/j.corsci.2014.09.008
12.
Y. Jang, Z. Tan, C. Jurey, Z. Xu, Z. Dong, B. Collins, Y. Yun, J. Sankar, Mater. Sci. Eng. C 48 (2015) 28 – 40. DOI: 10.1016/j.msec.2014.11.029
13.
E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, M. Vedani, J. Mech. Behavior of Bio. Mater. 37 (2014) 307 – 322. DOI: 10.1016/j.jmbbm.2014.05.024
14.
E. Willbold, A. A. Kaya, R. A. Kaya, F. Beckmann, F. Witte, Mater. Sci. Eng. B, 176 (2011) 1835 – 1840. DOI: 10.1016/j.mseb.2011.02.010
15.
X.‑N. Gu, S.‑S. Li, X.‑M. Li, Y.‑B. Fan, Frontiers of Mater. Sci. 8 (3) (2014) 200 – 218. DOI: 10.1007/s11706‑014‑0253‑9
16.
N. T. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G. J. Dias, M. P. Staiger, J. Biomed. Mater. Res. B, 95 (2010) 91 – 100. DOI: 10.1002/jbm.b.31687
17.
Y. Chino, M. Kobata, H. Iwasaki, M. Mabuchi, Mater. Trans. 43 (2002) 2643 – 2646. DOI: 10.2320/matertrans.43.2643
18.
F. O. Riemelmoser, M. Kuhlein, H. Kilian, M. Kettner, A. C. Hanzi, P. J. Uggowitzer, Adv. Eng. Mater. 9 (2007) 799 – 802. DOI: 10.1002/adem.200700161
19.
H. R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M. A. M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj, Materials and Corrosion 65 (2014) 1178 – 1187. DOI: 10.1002/maco.201307588
20.
F. H. Dalla Torre, A. C. Hänzi, P. J. Uggowitzer, Scripta Mater. 59 (2008) 207 – 210. DOI: 10.1016/j.scriptamat.2008.03.017
21.
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Acta Biomater. 6 (2010) 626 – 640. DOI: 10.1016/j.actbio.2009.06.028
22.
G. I. Morozova, V. V. Tikhonova, N. F. Lashko, Metal Sci. Heat Treat. 20 (1978) 657 – 660. DOI: 10.1007/BF00780803
23.
R. K. Singh Raman, S. Jafari, S. E. Harandi, Eng. Fract. Mech. 137 (2015) 97 – 108. DOI: 10.1016/j.engfracmech.2014.08.009
24.
X.‑N. Gu, Y.‑F. Zheng, Frontiers of Mater. Sci. in China 4 (2010) 111 – 115. DOI: 10.1007/s11706‑010‑0024‑1
25.
Y. Estrin, A. Vinogradov, Acta Mater. 61 (2013) 782 – 817. DOI: 10.1016 / j.actamat.2012.10.038
26.
Vinogradov, D. Orlov, Y. Estrin, Scripta Mater. 67 (2012) 209 – 212. DOI: 10.1016/j.scriptamat.2012.04.021
27.
D. Orlov, K. D. Ralston, N. Birbilis, Y. Estrin, Acta Mater. 59 (2011) 6176 – 6186. DOI: 10.1016/j.actamat.2011.06.033
28.
D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, Letters on Mater. 1 (2011) 213 – 216. DOI: 10.22226/2410‑3535‑2011‑4‑213‑216
29.
K. Ebtehaj, D. Hardie, R. N. Parkins, Corr. Sci. 28 (1988) 811 – 821. DOI: 10.1016/0010-938X(88)90119-9
30.
G. Song, A. Atrens, D. StJohn, Essential Readings in Magnesium Technology, Springer Int. Pub., Cham, 2016, pp. 565 – 572. DOI: 10.1007/978‑3‑319‑48099‑2_90
31.
D. Nugmanov, O. Sitdikov, M. Markushev, Mater. Sci. For.830 – 831 (2015) 7 – 10. DOI: 10.4028/www.scientific.net/MSF.830-831.7
32.
D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, IOP Conf. Series: Mater. Sci. Eng. 82 (1) (2015) 012099. DOI: 10.1088/1757-899X/82/1/012099
33.
D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, Bas. Problelms in Mater. Sci. 9 (2012) 230 – 234. DOI: 10.3390/met5042316
34.
R. Song, D. B. Liu, Y. C. Liu, W. B. Zheng, Y. Zhao, M. F. Chen, Frontiers of Mater. Sci. 8 (2014) 264 – 270. DOI: 10.1007/s11706‑014‑0258‑4
35.
B. Ullmann, J. Reifenrath, J.‑M. Seitz, D. Bormann, A. Meyer-Lindenberg, Part H, 227 (2013) 317 – 326. DOI: 10.1177/0954411912471495
36.
Vinogradov, T. Mimaki, S. Hashimoto, R. Valiev, Scripta Mater. 41 (1999) 319 – 326.
37.
H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, S. Hashimoto, Corr. Sci. 50 (2008) 1215 – 1220. DOI: 10.1016/j.corsci.2008.01.024
38.
D.‑J. Lin, F.‑Y. Hung, H.‑J. Liu, M.‑L. Yeh, Adv. Eng. Mater. (2017) 1700159. DOI: 10.1002/adem.201700159
39.
N. N. Aung, W. Zhou, Corr. Sci. 52 (2010) 589 – 594. DOI: 10.1016/j.corsci.2009.10.018
40.
D.‑J. Lin, F.‑Y. Hung, T.‑S. Lui, M.‑L. Yeh, Mater. Sci. Eng. C 51 (Suppl. C) (2015) 300 – 308. DOI: 10.1016/j.msec.2015.03.004
41.
Q. Peng, J. Guo, H. Fu, X. Cai, Y. Wang, B. Liu, Z. Xu, Sci. Rep. 4 (2014) 3620. DOI: 10.1038/srep03620
42.
S. Izumi, M. Yamasaki, Y. Kawamura, Corr. Sci. 51 (2009) 395 – 402. DOI: 10.1016/j.corsci.2008.11.003
43.
A. Vinogradov, J. Mater Res. (2017) 1 – 13. DOI: 10.1557/jmr.2017.268