On the corrosion of ZK60 magnesium alloy after severe plastic deformation

D. Merson, E. Vasilev, M. Markushev, A. Vinogradov
Received: 13 October 2017; Accepted: 23 October 2017
Citation: D. Merson, E. Vasilev, M. Markushev, A. Vinogradov. On the corrosion of ZK60 magnesium alloy after severe plastic deformation. Letters on Materials, 2017, 7(4) 421-427
BibTex   DOI: 10.22226/2410-3535-2017-4-421-427


The influence of the microstructure, its heterogeneity, grain size and distribution of secondary phases on the corrosion rate is demonstrated. The microstructure refinement by the severe plastic deformation leading to the increasing fraction of grain boundaries, promotes the formation of a reasonably uniform protective layer, reduces the inhomogeneity of the second phases and increases the overall corrosion resistance of the ZK60 alloy.Magnesium and its alloys are promising materials for the surgical implants due to their exceptional mechanical properties, biocompatibility and biodegradability. Binary Mg-Zn and ternary Mg-Zn-Zr alloys are the most obvious candidates for further design of biomaterials. However, they have to meet many requirements, including corrosion performance. In this work, we demonstrate that the corrosion resistance of Mg-6Zn-0.5Zr alloy ZK60 can be controlled to a large extent by the thermomechanical treatment involving hot severe plastic deformation (SPD). The multi-axial isothermal forging (MIF) is employed to deform the alloy ZK60 to different strains at 400°C and 300°C. The influence of the microstructure, its heterogeneity, grain size and distribution of second phases on the corrosion rate is demonstrated. It was found, that microstructure refinement by hot SPD leads to the increasing fraction of grain boundaries, promotes the formation of a reasonably uniform protective layer, reduces the inhomogeneity of the second phases and increases the overall corrosion resistance of the investigated ZK60 alloy. The homogeneous microstructure after multi-axial isothermal forging plays an important role in the corrosion performance since bimodal grain boundary structure can lead to large differences in the driving force for oxidation at different points of the material, and, as a consequence, to the difference in the spatial properties and the heterogeneity of the protective oxide film. With the reasonable corrosion performance and excellent mechanical properties, the fine-grained alloy ZK60 manufactured by hot two-step MIF processing has a great potential for bio-medical applications as a material for bio-resorbable implants or vascular stents.

References (43)

F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, H. Windhagen, Biomaterials 26 (2005) 3557 – 3563. DOI: 10.1016/j.biomaterials.2004.09.049
H. H. Uhlig, R. W. Revie, Corrosion and corrosion control: an introduction to corrosion science and engineering, 3rd ed., Wiley, New York; Chichester, 1985.
K. U. Kainer, Magnesium alloys and technology, DGM: Wiley-VCH, Weinheim, 2003.
W. Xu, N. Birbilis, G. Sha, Y. Wang, J. E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14 (2015) 1229 – 1235. DOI: 10.1038/nmat4435
N. T. Kirkland, J. Lespagnol, N. Birbilis, M. P. Staiger, Corr. Sci. 52 (2010) 287 – 291. DOI: 10.1016/j.corsci.2009.09.033
P. Doležal, J. Zapletal, S. Fintová, Z. Trojanová, M. Greger, P. Roupcová, T. Podrábský, Materials 9 (2016) 880. DOI: 10.3390/ma9110880
E. Vasilev, M. Linderov, D. Nugmanov, O. Sitdikov, M. Markushev, A. Vinogradov, Metals 5 (2015) 2316. DOI: 10.3390/met5042316
H. S. Brar, J. P. Ball, I. S. Berglund, J. B. Allen, M. V. Manuel, Acta Biomater. 9 (2013) 5331 – 5340. DOI: 10.1016/j.actbio.2012.08.004
M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59 (2011) 3646 – 3658. DOI: 10.1016/j.actamat.2011.02.038
M. Yamasaki, N. Hayashi, S. Izumi, Y. Kawamura, Corr. Sci. 49 (2007) 255 – 262. DOI: 10.1016/j.corsci.2006.05.017
J. Hofstetter, E. Martinelli, A. M. Weinberg, M. Becker, B. Mingler, P. J. Uggowitzer, J. F. Löffler, Corr. Sci. 91 (2015) 29 – 36. DOI: 10.1016/j.corsci.2014.09.008
Y. Jang, Z. Tan, C. Jurey, Z. Xu, Z. Dong, B. Collins, Y. Yun, J. Sankar, Mater. Sci. Eng. C 48 (2015) 28 – 40. DOI: 10.1016/j.msec.2014.11.029
E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, M. Vedani, J. Mech. Behavior of Bio. Mater. 37 (2014) 307 – 322. DOI: 10.1016/j.jmbbm.2014.05.024
E. Willbold, A. A. Kaya, R. A. Kaya, F. Beckmann, F. Witte, Mater. Sci. Eng. B, 176 (2011) 1835 – 1840. DOI: 10.1016/j.mseb.2011.02.010
X.‑N. Gu, S.‑S. Li, X.‑M. Li, Y.‑B. Fan, Frontiers of Mater. Sci. 8 (3) (2014) 200 – 218. DOI: 10.1007/s11706‑014‑0253‑9
N. T. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G. J. Dias, M. P. Staiger, J. Biomed. Mater. Res. B, 95 (2010) 91 – 100. DOI: 10.1002/jbm.b.31687
Y. Chino, M. Kobata, H. Iwasaki, M. Mabuchi, Mater. Trans. 43 (2002) 2643 – 2646. DOI: 10.2320/matertrans.43.2643
F. O. Riemelmoser, M. Kuhlein, H. Kilian, M. Kettner, A. C. Hanzi, P. J. Uggowitzer, Adv. Eng. Mater. 9 (2007) 799 – 802. DOI: 10.1002/adem.200700161
H. R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M. A. M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj, Materials and Corrosion 65 (2014) 1178 – 1187. DOI: 10.1002/maco.201307588
F. H. Dalla Torre, A. C. Hänzi, P. J. Uggowitzer, Scripta Mater. 59 (2008) 207 – 210. DOI: 10.1016/j.scriptamat.2008.03.017
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Acta Biomater. 6 (2010) 626 – 640. DOI: 10.1016/j.actbio.2009.06.028
G. I. Morozova, V. V. Tikhonova, N. F. Lashko, Metal Sci. Heat Treat. 20 (1978) 657 – 660. DOI: 10.1007/BF00780803
R. K. Singh Raman, S. Jafari, S. E. Harandi, Eng. Fract. Mech. 137 (2015) 97 – 108. DOI: 10.1016/j.engfracmech.2014.08.009
X.‑N. Gu, Y.‑F. Zheng, Frontiers of Mater. Sci. in China 4 (2010) 111 – 115. DOI: 10.1007/s11706‑010‑0024‑1
Y. Estrin, A. Vinogradov, Acta Mater. 61 (2013) 782 – 817. DOI: 10.1016 / j.actamat.2012.10.038
Vinogradov, D. Orlov, Y. Estrin, Scripta Mater. 67 (2012) 209 – 212. DOI: 10.1016/j.scriptamat.2012.04.021
D. Orlov, K. D. Ralston, N. Birbilis, Y. Estrin, Acta Mater. 59 (2011) 6176 – 6186. DOI: 10.1016/j.actamat.2011.06.033
D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, Letters on Mater. 1 (2011) 213 – 216. DOI: 10.22226/2410‑3535‑2011‑4‑213‑216
K. Ebtehaj, D. Hardie, R. N. Parkins, Corr. Sci. 28 (1988) 811 – 821. DOI: 10.1016/0010-938X(88)90119-9
G. Song, A. Atrens, D. StJohn, Essential Readings in Magnesium Technology, Springer Int. Pub., Cham, 2016, pp. 565 – 572. DOI: 10.1007/978‑3‑319‑48099‑2_90
D. Nugmanov, O. Sitdikov, M. Markushev, Mater. Sci. For.830 – 831 (2015) 7 – 10. DOI: 10.4028/www.scientific.net/MSF.830-831.7
D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, IOP Conf. Series: Mater. Sci. Eng. 82 (1) (2015) 012099. DOI: 10.1088/1757-899X/82/1/012099
D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, Bas. Problelms in Mater. Sci. 9 (2012) 230 – 234. DOI: 10.3390/met5042316
R. Song, D. B. Liu, Y. C. Liu, W. B. Zheng, Y. Zhao, M. F. Chen, Frontiers of Mater. Sci. 8 (2014) 264 – 270. DOI: 10.1007/s11706‑014‑0258‑4
B. Ullmann, J. Reifenrath, J.‑M. Seitz, D. Bormann, A. Meyer-Lindenberg, Part H, 227 (2013) 317 – 326. DOI: 10.1177/0954411912471495
Vinogradov, T. Mimaki, S. Hashimoto, R. Valiev, Scripta Mater. 41 (1999) 319 – 326.
H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, S. Hashimoto, Corr. Sci. 50 (2008) 1215 – 1220. DOI: 10.1016/j.corsci.2008.01.024
D.‑J. Lin, F.‑Y. Hung, H.‑J. Liu, M.‑L. Yeh, Adv. Eng. Mater. (2017) 1700159. DOI: 10.1002/adem.201700159
N. N. Aung, W. Zhou, Corr. Sci. 52 (2010) 589 – 594. DOI: 10.1016/j.corsci.2009.10.018
D.‑J. Lin, F.‑Y. Hung, T.‑S. Lui, M.‑L. Yeh, Mater. Sci. Eng. C 51 (Suppl. C) (2015) 300 – 308. DOI: 10.1016/j.msec.2015.03.004
Q. Peng, J. Guo, H. Fu, X. Cai, Y. Wang, B. Liu, Z. Xu, Sci. Rep. 4 (2014) 3620. DOI: 10.1038/srep03620
S. Izumi, M. Yamasaki, Y. Kawamura, Corr. Sci. 51 (2009) 395 – 402. DOI: 10.1016/j.corsci.2008.11.003
A. Vinogradov, J. Mater Res. (2017) 1 – 13. DOI: 10.1557/jmr.2017.268