On the corrosion of ZK60 magnesium alloy after severe plastic deformation

D. Merson, E. Vasilev, M. Markushev, A. Vinogradov show affiliations and emails
Received: 13 October 2017; Accepted: 23 October 2017
Citation: D. Merson, E. Vasilev, M. Markushev, A. Vinogradov. On the corrosion of ZK60 magnesium alloy after severe plastic deformation. Lett. Mater., 2017, 7(4) 421-427
BibTex   https://doi.org/10.22226/2410-3535-2017-4-421-427

Abstract

The influence of the microstructure, its heterogeneity, grain size and distribution of secondary phases on the corrosion rate is demonstrated. The microstructure refinement by the severe plastic deformation leading to the increasing fraction of grain boundaries, promotes the formation of a reasonably uniform protective layer, reduces the inhomogeneity of the second phases and increases the overall corrosion resistance of the ZK60 alloy.Magnesium and its alloys are promising materials for the surgical implants due to their exceptional mechanical properties, biocompatibility and biodegradability. Binary Mg-Zn and ternary Mg-Zn-Zr alloys are the most obvious candidates for further design of biomaterials. However, they have to meet many requirements, including corrosion performance. In this work, we demonstrate that the corrosion resistance of Mg-6Zn-0.5Zr alloy ZK60 can be controlled to a large extent by the thermomechanical treatment involving hot severe plastic deformation (SPD). The multi-axial isothermal forging (MIF) is employed to deform the alloy ZK60 to different strains at 400°C and 300°C. The influence of the microstructure, its heterogeneity, grain size and distribution of second phases on the corrosion rate is demonstrated. It was found, that microstructure refinement by hot SPD leads to the increasing fraction of grain boundaries, promotes the formation of a reasonably uniform protective layer, reduces the inhomogeneity of the second phases and increases the overall corrosion resistance of the investigated ZK60 alloy. The homogeneous microstructure after multi-axial isothermal forging plays an important role in the corrosion performance since bimodal grain boundary structure can lead to large differences in the driving force for oxidation at different points of the material, and, as a consequence, to the difference in the spatial properties and the heterogeneity of the protective oxide film. With the reasonable corrosion performance and excellent mechanical properties, the fine-grained alloy ZK60 manufactured by hot two-step MIF processing has a great potential for bio-medical applications as a material for bio-resorbable implants or vascular stents.

References

1. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, H. Windhagen, Biomaterials 26 (2005) 3557 - 3563. Crossref
2. H. H. Uhlig, R. W. Revie, Corrosion and corrosion control: an introduction to corrosion science and engineering, 3rd ed., Wiley, New York; Chichester, 1985.
3. K. U. Kainer, Magnesium alloys and technology, DGM: Wiley-VCH, Weinheim, 2003.
4. W. Xu, N. Birbilis, G. Sha, Y. Wang, J. E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14 (2015) 1229 - 1235. Crossref
5. N. T. Kirkland, J. Lespagnol, N. Birbilis, M. P. Staiger, Corr. Sci. 52 (2010) 287 - 291. Crossref
6. P. Dole┼żal, J. Zapletal, S. Fintová, Z. Trojanová, M. Greger, P. Roupcová, T. Podrábský, Materials 9 (2016) 880. Crossref
7. E. Vasilev, M. Linderov, D. Nugmanov, O. Sitdikov, M. Markushev, A. Vinogradov, Metals 5 (2015) 2316. Crossref
8. H. S. Brar, J. P. Ball, I. S. Berglund, J. B. Allen, M. V. Manuel, Acta Biomater. 9 (2013) 5331 - 5340. Crossref
9. M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59 (2011) 3646 - 3658. Crossref
10. M. Yamasaki, N. Hayashi, S. Izumi, Y. Kawamura, Corr. Sci. 49 (2007) 255 - 262. Crossref
11. J. Hofstetter, E. Martinelli, A. M. Weinberg, M. Becker, B. Mingler, P. J. Uggowitzer, J. F. Löffler, Corr. Sci. 91 (2015) 29 - 36. Crossref
12. Y. Jang, Z. Tan, C. Jurey, Z. Xu, Z. Dong, B. Collins, Y. Yun, J. Sankar, Mater. Sci. Eng. C 48 (2015) 28 - 40. Crossref
13. E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, M. Vedani, J. Mech. Behavior of Bio. Mater. 37 (2014) 307 - 322. Crossref
14. E. Willbold, A. A. Kaya, R. A. Kaya, F. Beckmann, F. Witte, Mater. Sci. Eng. B, 176 (2011) 1835 - 1840. Crossref
15. X.-N. Gu, S.-S. Li, X.-M. Li, Y.-B. Fan, Frontiers of Mater. Sci. 8 (3) (2014) 200 - 218. Crossref
16. N. T. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G. J. Dias, M. P. Staiger, J. Biomed. Mater. Res. B, 95 (2010) 91 - 100. Crossref
17. Y. Chino, M. Kobata, H. Iwasaki, M. Mabuchi, Mater. Trans. 43 (2002) 2643 - 2646. Crossref
18. F. O. Riemelmoser, M. Kuhlein, H. Kilian, M. Kettner, A. C. Hanzi, P. J. Uggowitzer, Adv. Eng. Mater. 9 (2007) 799 - 802. Crossref
19. H. R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M. A. M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj, Materials and Corrosion 65 (2014) 1178 - 1187. Crossref
20. F. H. Dalla Torre, A. C. Hänzi, P. J. Uggowitzer, Scripta Mater. 59 (2008) 207 - 210. Crossref
21. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Acta Biomater. 6 (2010) 626 - 640. Crossref
22. G. I. Morozova, V. V. Tikhonova, N. F. Lashko, Metal Sci. Heat Treat. 20 (1978) 657 - 660. Crossref
23. R. K. Singh Raman, S. Jafari, S. E. Harandi, Eng. Fract. Mech. 137 (2015) 97 - 108. Crossref
24. X.-N. Gu, Y.-F. Zheng, Frontiers of Mater. Sci. in China 4 (2010) 111 - 115. Crossref
25. Y. Estrin, A. Vinogradov, Acta Mater. 61 (2013) 782 - 817. Crossref
26. Vinogradov, D. Orlov, Y. Estrin, Scripta Mater. 67 (2012) 209 - 212. Crossref
27. D. Orlov, K. D. Ralston, N. Birbilis, Y. Estrin, Acta Mater. 59 (2011) 6176 - 6186. Crossref
28. D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, Letters on Mater. 1 (2011) 213 - 216. Crossref
29. K. Ebtehaj, D. Hardie, R. N. Parkins, Corr. Sci. 28 (1988) 811 - 821. Crossref
30. G. Song, A. Atrens, D. StJohn, Essential Readings in Magnesium Technology, Springer Int. Pub., Cham, 2016, pp. 565 - 572. Crossref
31. D. Nugmanov, O. Sitdikov, M. Markushev, Mater. Sci. For.830 - 831 (2015) 7 - 10. Crossref
32. D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, IOP Conf. Series: Mater. Sci. Eng. 82 (1) (2015) 012099. Crossref
33. D. R. Nugmanov, O. S. Sitdikov, M. V. Markushev, Bas. Problelms in Mater. Sci. 9 (2012) 230 - 234. Crossref
34. R. Song, D. B. Liu, Y. C. Liu, W. B. Zheng, Y. Zhao, M. F. Chen, Frontiers of Mater. Sci. 8 (2014) 264 - 270. Crossref
35. B. Ullmann, J. Reifenrath, J.-M. Seitz, D. Bormann, A. Meyer-Lindenberg, Part H, 227 (2013) 317 - 326. Crossref
36. Vinogradov, T. Mimaki, S. Hashimoto, R. Valiev, Scripta Mater. 41 (1999) 319 - 326.
37. H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, S. Hashimoto, Corr. Sci. 50 (2008) 1215 - 1220. Crossref
38. D.-J. Lin, F.-Y. Hung, H.-J. Liu, M.-L. Yeh, Adv. Eng. Mater. (2017) 1700159. Crossref
39. N. N. Aung, W. Zhou, Corr. Sci. 52 (2010) 589 - 594. Crossref
40. D.-J. Lin, F.-Y. Hung, T.-S. Lui, M.-L. Yeh, Mater. Sci. Eng. C 51 (Suppl. C) (2015) 300 - 308. Crossref
41. Q. Peng, J. Guo, H. Fu, X. Cai, Y. Wang, B. Liu, Z. Xu, Sci. Rep. 4 (2014) 3620. Crossref
42. S. Izumi, M. Yamasaki, Y. Kawamura, Corr. Sci. 51 (2009) 395 - 402. Crossref
43. A. Vinogradov, J. Mater Res. (2017) 1 - 13. Crossref

Cited by (2)

1.
M. Linderov, E. Vasilev, D. Merson, M. Markushev, A. Vinogradov. Metals. 8(1), 20 (2017). Crossref
2.
D. Liu, M. Shen, Y. Tang, Y. Hu, L. Zhao. Met. Mater. Int. (2019). Crossref