The laser-welded joint of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert

I. Veretennikova, N. Pugacheva, E. Smirnova, N. Michurov
Received: 20 June 2017; Revised: 18 October 2017; Accepted: 24 October 2017
This paper is written in Russian
Citation: I. Veretennikova, N. Pugacheva, E. Smirnova, N. Michurov. The laser-welded joint of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert. Letters on Materials, 2018, 8(1) 42-47
BibTex   DOI: 10.22226/2410-3535-2018-1-42-47

Abstract

The microstructure and local mechanical properties of zones of 12Cr18Ni10Ti steel and a titanium alloy VT1-0 with an intermediate copper insert joint were carried out. The stress–strain diagrams for zones of the joint are received using the original technique for determining coefficients of the “stress–strain” diagram.The microstructure and local mechanical properties of zones of 12Cr18Ni10Ti steel and a titanium alloy VT1-0 with an intermediate copper insert joint were carried out. The study was performed using electronic scanning microscopy, microindentation and scratch tests. The phase composition was determined by the EBSD analysis. Dissolution and mixing of welded materials in a copper are observed. The material of joint is a supersaturated solid solution of Fe, Ni, Cr, Ti in the copper crystal lattice with uniformly distributed particles of TiFe, Ti(Fe,Cr)2, and CuTi2. A diffusion zones with a changed chemical composition 10-150 μm thick and a microhardness of 2,9-3,4 GPa are formed on the boundary with steel, and at a boundary with a titanium alloy - 50-100 μm thick and the microhardness of 4,6-6 GPa. The microhardness of steel is 2,7-3,1 GPa, titanium alloy - 2,4-2,8 GPa, solid solution based on copper - 1,7-2,1 GPa, intermetallides - 3,8-4,9 GPa. The stress–strain diagrams for zones of the joint are received using the original technique for determining coefficients of the “stress–strain” diagram by microindentation and scratch tests. The diffusion zone on the boundary with titanium is greater strength. There is established the formation of a solid solution based on β-titanium and dispersed particles of CuTi2 and then - intermetallides of Ti(Fe,Cr)2. The obtained data can be used to estimate stress-strain state, strength and efficiency of the joint under load and to give recommendations for practical.

References (16)

1.
Yan Zhang, Da Qian Sun, Xiao Yan Gu, Hong Mei Li. Materials Letters. 185, 152 – 155 (2016).
2.
I. Tomashchukn, P. Sallamand, N. Belyavina, M. Pilloz. Materials Science and Engineering: A. 585, 114 – 122 (2013).
3.
A. N. Cherepanov, Yu. V. Afonin, A. M. Orishich. Tyazheloe Mashinostroenie. № 8, 24 – 26. (2009). (in Russian) [А. Н. Черепанов, Ю. В. Афонин, А. М. Оришич. Тяжелое машиностроение. № 8, 24 – 26 (2009).].
4.
A. M. Orishich, A. N. Cherepanov, V. P. Shapeev, N. B. Pugacheva. Nanomodificirovanie pri lazernoj svarke splavov. Textbook. Novosibirsk: Sibirskoe nauchnoe izdanie. (2014) 258 p. (in Russian) [А. М. Оришич, А. Н. Черепанов, В. П. Шапеев, Н. Б. Пугачева. Наномодифицирование при лазерной сварке сплавов. Новосибирск: Сибирское научное издание. 2014. 258 с.]
5.
N. B. Pugacheva, S. V. Smirnov, D. I. Vichuzhanin, S. M. Zadvorkin, L. S. Goruleva. Deformacijairazrusheniematerialov. № 7, 26 – 33 (2012). (inRussian) [Н. Б. Пугачева, С. В. Смирнов, Д. И. Вичужанин, С. М. Задворкин, Л. С. Горулева. Деформация и разрушение материалов. № 7, 26 – 33 (2012).]
6.
N. B. Pugacheva, E. B. Trushina, E. I. Pugacheva, A. M. Orishich, A. N. Cherepanov. Voprosymaterialovedenija. № 1, 166 – 174 (2013). (inRussian) [Н. Б. Пугачева, Е. Б. Трушина, Е. И. Пугачева, А. М. Оришич, А. Н. Черепанов. Вопросыматериаловедения. № 1, 166 – 174 (2013).]
7.
A. N. Cherepanov, A. M. Orishich, N. B. Pugacheva, V. P. Shapeev. Teplofizikaiajeromehanika. T. 22, № 2, 143 – 150 (2015). (inRussian) [А. Н. Черепанов, А. М. Оришич, Н. Б. Пугачева, В. П. ШапеевТеплофизикаиаэромеханика. Т. 22, № 2, 143 – 150 (2015).]
8.
S. V. Kuryntsev, A. E. Morushkin, A. Kh. Gilmutdinov. Optics and Lasers in Engineering. 90, 101 – 109 (2017).
9.
I. Tomashchuka, P. Sallamanda, E. Cicalaa, P. Peyreb, D. Greveya. Journal of Materials Processing Technology. 217, 96 – 104 (2015).
10.
I. Magnabosco, P. Ferro, F. Bonollo, L. Arnberg. Materials Science and Engineering: A. 424, 163 – 173 (2006).
11.
Mutiu F. Erinosho, Esther T. Akinlabi, Sisa Pityana.Trans. Nonferrous Met. Soc. China. 25, 2608−2616 (2015).
12.
S. V. Smirnov, E. O. Smirnova. Journal of Materials Research. V. 29, № 16. 1730 – 1736. (2014)
13.
S. V. Smirnov, E. O. Smirnova, I. A. Golubkova.Vestnik permskogo nacional’’nogo issledovatel’’skogo politehnicheskogo universiteta. Mehanika. № 2, 84 – 91 (2011). (in Russian) [С. В. Смирнов, Е. О. Смирнова, И. А. Голубкова. Вестник пермского национального исследовательского политехнического университета. Механика. № 2, 84 – 91 (2011).]
14.
A. A. Il’in, B. A. Kolachev, I. S. Pol’kin. Titanovye splavy. Sostav, struktura, svojstva. Textbook. Spravochnik. Moskva, VILS-MATI. (2009) 520 p. (in Russian) [А. А. Ильин, Б. А. Колачев, И. С. Полькин.Титановые сплавы. Состав, структура, свойства. Справочник. Москва, ВИЛС-МАТИ. 2009.520 с.]
15.
W. C. Oliver, G. M. J. Mater. Res. 1992. V. 7. № 6. 1554 – 1583 (1992).
16.
N. B. Pugacheva, M. V. Mjasnikova, N. S. Michurov. Fizika metallov i metallovedenie. Т. 117, № 2, 204 – 212 (2016). (in Russian) [Н. Б. Пугачева, М. В. Мясникова, Н. С. Мичуров. Физика металлов и металловедение. T. 117, № 2, 204 – 212 (2016).]