Synthesis and Characteristics of the B4C–ZrB2 Composites

V.A. Shcherbakov, A.N. Gryadunov, M.I. Alymov show affiliations and emails
Received 15 June 2017; Accepted 19 September 2017;
Citation: V.A. Shcherbakov, A.N. Gryadunov, M.I. Alymov. Synthesis and Characteristics of the B4C–ZrB2 Composites. Lett. Mater., 2017, 7(4) 398-401
BibTex   https://doi.org/10.22226/2410-3535-2017-4-398-401

Abstract

Bulk ceramic materials based on B4C–ZrB2 systems have been produced by means of pressure-assisted self-propagating high temperature synthesis (SHS) using a mixture of elementary powders B, C and Zr. The influence of reaction mixture composition on microstructure formation and physical and mechanical characteristics of SHS composites have been studied by X-ray diffraction and microstructural analysis.Bulk ceramic materials based on B4C–ZrB2 systems have been produced by means of pressure-assisted Self-propagating High temperature Synthesis (SHS) using a mixture of elementary powders B, C and Zr. Reactant mixture compositions were chosen based on thermodynamic calculations to obtain synthesis regimes with the formation of a liquid phase, ensuring proper compaction. The liquid phase in the SHS products consisted from molten B4C. The influence of a chemical oven on densification of the SHS-products was studied. Significant reducing of ceramic residual porosity was obtained at mass ratio of the reaction mixture and the «chemical oven» 1 : 4. The minimum residual porosity of SHS composites obtained by a "chemical oven" is 1.7 %. X-ray analysis showed that SHS products were equilibrium and contain refractory compounds ZrB2 and B4C, which formed a dispersed phase and a ceramic binder. The influence of the composition of the reaction mixture on the formation of the microstructure and phase composition of ceramic composites was studied. It is established that microstructure of SHS-composites depends on the B4C content. At the B4C content less than 10 % wt. the B4C–ZrB2 ceramic composite has uniform microstructure with ZrB2 grain sizes of 10 – 20 µm. Increasing of the B4C contents up to 20 % wt. leads to decreasing of the ZrB2 grain size up to 2 - 5 µm. Vickers Hardness of the SHS composites are 21–24.5 GPA.

References (16)

1. S. M. Zhu, W. G. Fahrenholtz, G. E. Hilmas, S. C. Zhang, E. J. Yadlowsky, M. D. Keitz. Composites Part A. 39 (3), 449 (2008). Crossref
2. W. Han, J. Gao, J. Zhang, J. Yu. Int. J. Eng. Innov. Technol. (IJEIT). 3 (1), 163 (2013).
3. M. M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykoski, S. J. Causey. J. Eur. Ceram. Soc., 19 (13-14), 2405 (1999). Crossref
4. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, J. A. Zaykoski. J. Am. Ceram. Soc. 95 (5), 1347 (2007). Crossref
5. V. Domnich, S. Reynaud, R. A. Haber, M. Chhowalla. J. Am. Ceram. Soc. 94 (11), 3605 (2011). Crossref
6. F. Thevenot. J. Eur. Ceram. Soc. 6 (4), 205 (1990). Crossref
7. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas. J. Eur. Ceram. Soc. 29 (16), 3401 (2009). Crossref
8. W. M. Guo, L. X. Wu, Y. You, H. T. Lin, G. J. Zhang. J. Eur. Ceram. Soc. 36 (4), 951 (2016). Crossref
9. X. G. Wang, W. M. Guo, Y. M. Kan, G. J. Zhang. Adv. Eng. Mat. 12 (9), 893 (2010). Crossref
10. J. Zou, S. G. Huang, K. Vanmeensel, G. J. Zhang, J. Vleugels, O. Van der Biest. J. Am. Ceram. Soc. 96 (4), 1055 (2013). Crossref
11. S. Chakraborty, P. K. Das, D. Ghosh. Rev. Adv. Mater. Sci. (RAMS). 44, 182 (2016).
12. A. N. Pitjulin. In the book “Self-Propagating High Temperature Synthesis: Theory and Practice”. Chernogolovka: “Territoriya”. Ed. Sychev A. E., 432 p. (2001), pp. 333 - 353 (in Russian) [Питюлин А. Н. Силовое компактирование в СВС процессах, С. 333 - 353 в книге “Самораспространяющийся высокотемпературный синтез: теория и практика”. Черноголовка: “Территория”, 432 с. (2001)].
13. V. A. Scherbakov, A. N. Gryadunov, M. I. Alymov. Advanced Materials & Technologies. 4, 16 (2016). Crossref
14. A. A. Shiryaev. Int. J. of SHS. 4 (4), 351 (1995).
15. S. S. Mamyan, A. A Shiryaev, A. G. Merzhanov. Journal of Engineering Physics and Thermophysics. 65 (4), 974 (1993). Crossref
16. S. Chakraborty, D. Debnath, A. R. Mallick, P. K. Das. Int. J. Appl. Ceram. Technol., 12. (3). 568 (2015). Crossref

Cited by (11)

1.
V. Shcherbakov, A. Gryadunov, M. Alymov. LOM. 9(1), 11 (2019). Crossref
2.
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov. Dokl Phys Chem. 485(1), 47 (2019). Crossref
3.
A. S. Shchukin, D. Yu. Kovalev, A. E. Sytschev, A. V. Shcherbakov. Inorg. Mater. Appl. Res. 11(2), 271 (2020). Crossref
4.
V. A. Shestakov, T. S. Gudyma, Yu. L. Krutskii, N. F. Uvarov, A. E. Brester, I. N. Skovorodin. Inorg Mater. 57(5), 481 (2021). Crossref
5.
Tatiana S. Gudyma, Yuriy L. Krutskii, Nikolay F. Uvarov, Aleksandr I. Aparnev. MATEC Web Conf. 340, 01028 (2021). Crossref
6.
Yu. L. Krutskii, T. S. Gudyma, K. D. Dyukova, R. I. Kuz�min, T. M. Krutskaya. Izv. vys�. ucebn. zaved., Cern. metall. 64(6), 395 (2021). Crossref
7.
Yu. L. Krutskii, T. S. Gudyma, K. D. Dyukova, R. I. Kuz�min, T. M. Krutskaya. Steel Transl. 51(6), 359 (2021). Crossref
8.
T. S. Gudyma, Yu. L. Krutskii, E. A. Maksimovskii, A. V. Ukhina, A. I. Aparnev, A. I. Smirnov, N. F. Uvarov. Inorg Mater. 58(9), 912 (2022). Crossref
9.
P. A. Lazarev, M. L. Busurina, A. N. Gryadunov, A. E. Sytschev, O. D. Boyarchenko, A. V. Karpov. Inorg Mater. 58(9), 1005 (2022). Crossref
10.
P. A. Lazarev, M. L. Busurina, A. N. Gryadunov, A. E. Sytschev, A. F. Belikova. Izv. VUZ. Poroshk. Met. , 21 (2023). Crossref
11.
T. Le, K. Hirota, M. Kato, H. Miyamoto, M. Yuasa, T. Nishimura. Ceramics International. 46(11), 18478 (2020). Crossref

Similar papers