Nanocrystalline microstructure formation during hydrogen-induced phase transformations in Nd2Fe14B hard magnetic alloy

Received  07 December 2011; Accepted  16 February 2012
This paper is written in Russian
Citation: S.B. Rybalka. Nanocrystalline microstructure formation during hydrogen-induced phase transformations in Nd2Fe14B hard magnetic alloy. Lett. Mater., 2012, 2(1) 49-53
BibTex   https://doi.org/10.22226/2410-3535-2012-1-49-53

Abstract

The kinetics and features of nanocrystalline microstructure formation during direct and reverse hydrogen-induced phase transformations in Nd2Fe14B alloy has been studied. It has been established that a hydrogen-vacuum treatment carried out in accordance with the kinetic data of transformations in Nd2Fe14 alloy leads to a formation of nanocrystalline homogeneous microstructure with average grains size ~0.3 micrometer. It is shown that carrying out direct and reverse transformations taking into account of kinetic features of transformations as temperature and transformation time allow to avoid abnormal growth processes a main hard magnetic Nd2Fe14B phase that is one of the main factors for permanent magnets obtaining with high coercivity without very complicated and expensive of alloying procedures. 

References (35)

1. R.W. Cahn, H. Kazuhiro, P. Haasen. Physical Metallurgy.North-Holland, New York, (1996) 2888 p.
2. J.W. Christian. The Theory Transformations in Metalsand Alloys. Oxford, Pergamon Press, (2002) 1193 p.
3. J.M.D. Coey. Magnetism and Magnetic Materials.Cambridge University Press, Cambridge, (2010) 633 p.
4. Ya.M. Dovdalevskii. Alloying and thermal treatment ofhard magnetic alloys. Metallurgiya, Moscow, (1971) 176p. (in Russian).
5. I.B. Kekalo, B.A. Samarin. Physical metallurgy of aprecision alloys: Alloys with special magnetic properties.Metallurgiya, Moscow, (1989) 496 p. (in Russian).
6. P. Campbell. Permanent magnet materials and theirapplication. Cambridge University Press, Cambridge, (1994) 207 p.
7. M. Sagawa, S. Fujimura, N. Togawa et al. J. Appl. Phys. 55, 2083 (1984).
8. J.J. Croat, J.F. Herbst, R.W. Lee, F.E. Pinkerton. J. Appl.Phys. 55, 2078 (1984).
9. L. Schultz, J. Wecker, E. Hellstern. J. Appl. Phys. 61, 3583(1987).
10. R.W. Lee. Appl. Phys. Lett. 46, 790 (1985).
11. H.H. Stademaier, N.C. Lui. Matter. Lett. 4, 304 (1986).
12. C.R. Paik, H. Mino, M. Okada, H. Homma. IEEE Trans.Magn. 23, 2512 (1987).
13. T. Takeshita, R. Nakayama. Proc. X Int. Workshop onRare-Earth Magnets and Their Applications, Kyoto, Japan, 1989, pp. 551-558.
14. T. Takeshita, R. Nakayama. Proc. of the XI Int. Workshopon Rare-Earth Magnets and Their Applications, Pittsburg, USA, 1990, pp. 49-71.
15. T. Takeshita. J. Alloys Comp. 193, 231 (1993).
16. O. Gutfleisch, I.R. Harris. Proc. XV Int. Workshop onRare-Earth Magnets and Their Applications, Dresden, 1998, pp. 487-506.
17. R. Nakayama, T. Takeshita, M. Itakura, N. Kuwano, K.Oki. J. Appl. Phys. 76, 412 (1994).
18. T. Takeshita, K. Morimoto. J. Appl. Phys. 79, 5040 (1996).
19. T. Takeshita, R. Nakayama. IEEE Trans. J. Magn Japn. 8, 692 (1993).
20. V.A. Goltsov, S.B. Rybalka, D. Fruchart, V.A. Didus.Kinetics and some general features of hydrogen-induceddiffusive phase transformations in Nd2Fe14B type alloys.In: Progress in Hydrogen Treatment of Materials, ed. byGoltsov, V.A., Kassiopeya Ltd.-Coral Gables: Donetsk, Ukraine (2001) pp. 367-390.
21. S.B. Rybalka, V.A.Goltsov, V.A. Didus, D. Fruchart. J.Alloys Comp. 356-357, 390 (2003).
22. V.A.Goltsov, S.B. Rybalka, A.F. Volkov, Yu.G. Putilov, V.A.Didus. The Physics of Metals and Metallography. 89, 363(2000).
23. V.A. Goltsov, S.B. Rybalka, A.F. Volkov. FunctionalMaterials. 6, 326 (1999).
24. T. Takeshita. J. Alloys Comp. 231, 51 (1995).
25. I.R. Harris, P.J. McGuiness. Proc. XI Int. Workshop onRare-Earth Magnets and Their Applications, Pittsburg, 1990, pp. 29-48.
26. O. Gutfleisch, A. Bollero, A. Kirchner, D. Hinz, et al.Annual Report Leibniz Institute for Solid State andMaterials Research, Dresden, 2000, pp. 11-14.
27. O. Gutfliesch, M. Matzinger, J. Fidler, I.R. Harris. J. Magn.Magn. Mater. 147, 320 (1995).
28. H. Kronmuller, K.-D. Durst. J. Magn. Magn. Mater. 74, 291 (1988).
29. T. Weizhong, Z. Schuzeng, H. Bing. J. Magn. Magn. Mater.94, 67 (1991).
30. J. Fidler, T. Schrefl. J. Appl. Phys. 79, 5029 (1996).
31. W. Chen, R.W. Gao, M.G. Zhu, W. Pan et. al. J. Magn.Magh. Mater. 261, 222 (2003).
32. Y. Kawashita, N. Waki, T. Tayu, T. Sugiyama et. al. J.Magn. Magh. Mater. 269, 293 (2004).
33. K. Guth, T.G. Woodcock, L. Schultz, O. Gutfleisch. ActaMater. 59, 2029 (2011).
34. E. Estevez, J. Fidler, C. Short, I.R. Harris. J. Phys. D: Appl.Phys. 29, 951 (1996).
35. P.J. McGuiness, X.J. Zhang, K.G. Knoch et al. J. Magn.Magn. Mater. 104-107, 1169 (1992).

Cited by (2)

1.
Z. Wang, F. Li, H. Wang, A. Wang, S. Wu. J Mater Sci: Mater Electron. 29(19), 16654 (2018). Crossref
2.
S.B. Rybalka, I.O. Machikhina, O.V. Shcherbakova. Philosophical Magazine Letters. 100(1), 23 (2020). Crossref

Similar papers