Microhardness of eutectic Al-Si alloy after friction stir processing and annealing

R.R. Latypova, D.B. Kabirova, N.F. Khayretdinov, R.F. Fazlyakhmetov, M.F. Imayev show affiliations and emails
Received: 14 September 2022; Revised: 21 October 2022; Accepted: 24 October 2022
Citation: R.R. Latypova, D.B. Kabirova, N.F. Khayretdinov, R.F. Fazlyakhmetov, M.F. Imayev. Microhardness of eutectic Al-Si alloy after friction stir processing and annealing. Lett. Mater., 2022, 12(4s) 420-423
BibTex   https://doi.org/10.22226/2410-3535-2022-4-420-423


Schematic representation of distribution of microhardness over the sample cross section depending on the annealing temperature.The plate of eutectic Al-Si alloy (AK12D) with a thickness of about 5 mm was subjected to friction stir processing (FSP). Samples for the study were cut perpendicular to the welding direction. Next, the samples were annealed for 1 h in the temperature range 150 – 500°C, quenched in water, and subjected to natural aging for 3 months. Thermal stability of the microstructure in various zones after FSP and subsequent annealing was studied by scanning electron microscopy. The volume fractions of dendrites and thickness of the eutectic interlayers were calculated depending on the annealing temperature. It was found that in none of the zones did annealing up to Т = 500°C lead to a noticeable change in the microstructure of the alloy. It has been established that the temperature dependences of the microhardness of the stir zone and base material are different: for the base material it is of a “V-shaped” form with a minimum of 85 HV after annealing at T = 350°C, while for the stir zone it remains constant in the range of 95 – 98 HV after annealing up to 350 – 400°C, then increases and practically coincides with the values of the microhardness of the base material. The microhardness behavior of the stir zone is explained by the fact that the effect of FSP is similar to the effect of incomplete quenching.

References (22)

1. J. Clarke, A. Sarkar. Wear. 54, 7 (1979). Crossref
2. B. Prasad, K. Venkateswarlu, O. Modi, A. Jha, S. Das, R. Dasgupta, A. Yegneswaran. Metall. Mater. Trans. 29, 2747 (1998). Crossref
3. B. Zhang. D. R. Poirier. W. Chen. Metall. Mater. Trans. 30, 2659 (1999). Crossref
4. H. Kumar, R. Prasad, P. Kumar, S. P. Tewari, J. K. Singh. J. of Alloys and Compounds. 831 (5), 154832 (2020). Crossref
5. Y. J. Kwon, N. Saito, I. Shigematsu. J. of Mater. Sci. Letters. 21, 1473 (2002). Crossref
6. R. S. Mishra, Z. Y. Ma. Mater. Sci. and Eng. A. 341, 307 (2003). Crossref
7. R. S. Mishra, M. W. Mahoney. Friction Stir Welding and Processing. ASM International (2007) 368 p.
8. Z. Y. Ma, A. L. Pilchak, M. C. Juhas, J. C. Williams. Scripta Materialia. 58, 361 (2008). Crossref
9. Z. Y. Ma, S. R. Sharma, R. S. Mishra. Metall. and Mater. Trans. A. 37A, 3323 (2006). Crossref
10. W. Cheng, C. Y. Liu, Z. J. Ge. Mater. Sci. and Eng. A. 804, 140786 (2021). Crossref
11. A. Kumar, V. Kumar. Materials Today: Proceedings. 63, 494 (2022). Crossref
12. D. A. P. Prabhakar, A. K. Shettigar, M. A. Herbert, M. Patel G C, D. Yu. Pimenov, K. Giasin, C. Prakash. J. of Mater. Res. and Technol. 20, 3025 (2022). Crossref
13. M. M. El-Sayed, A. Y. Shash, M. Abd-Rabou, M. G. El Sherbiny. J. of Advanced Joining Processes. 3, 100059 (2021). Crossref
14. M. Akbari, M. H. Shojaeefard, P. Asadi, A. Khalkhali. Trans. Nonferrous Met. Soc. China. 27, 2317 (2017). Crossref
15. M. Soleymanpour, H. J. Aval, R. Jamaati. J. of Manufacturing Sci. and Technol. 37, 19 (2022). Crossref
16. H. J. Jiang, C. Y. Liu, Z. X. Yang, Y. P. Li, H. F. Huang, F. C. Qin. J. of Mater. Eng. and Performance. 28, 1173 (2019). Crossref
17. P. Nelaturu, S. Jana, R. S. Mishra, G. Grant, B. E. Carlson. Mater. Sci. and Eng. A. 780, 139175 (2020). Crossref
18. K. B. Golafshani, S. Nourouzi, H. J. Aval. CIRP J. of Manufacturing Science and Technol. 35, 41 (2021). Crossref
19. Kh. Valeeva, A. Kh. Akhunova, D. B. Kabirova, M. F. Imayev, R. F. Fazlyakhmetov. Letters on Materials. 11 (2), 119 (2021). (in Russian) [А. Х. Валеева ORCID logo, А. Х. Ахунова, Д. Б. Кабирова, М. Ф. Имаев, Р. Ф. Фазлыахметов. Письма о материалах. 11 (2), 119 (2021).]. Crossref
20. L. F. Mondolfo. Aluminum Alloys: Structure and Properties. Butterworths London-Boston Sydney-Wellington-Durban-Toronto (1976) 971 p.
21. I. I. Novikov, V. S. Zolotorevsky, V. K. Portnoy et. al. (ed. by V. S. Zolotorevsky). Physical Metallurgy. Volume 2. Heat treatment. Alloys. Moscow, MISIS (2014) 526 p. (in Russian) [И. И. Новиков, В. С. Золоторевский, В. К. Портной и др. (под ред. В. С. Золоторевского). Металловедение. Том 2. Термическая обработка. Сплавы. Москва, МИСиС (2014) 526 c.].
22. R. W. K. Honeycombe. The plastic deformation of metals. Edward Arnold (Publishers) Ltd (1968) 477 p.

Similar papers


1. Ministry of Science and Higher Education of the Russian Federation - State Assignment of the IMSP RAS (No. AAAA-A19‑119021390106‑1)