Superplastic deformation of fine-grained AE42 and LAE442 magnesium alloys

P. Minárik ORCID logo , T. Vávra, J. Strásky, B. Hadzima, R. Král ORCID logo show affiliations and emails
Received 01 September 2018; Accepted 25 September 2018;
Citation: P. Minárik, T. Vávra, J. Strásky, B. Hadzima, R. Král. Superplastic deformation of fine-grained AE42 and LAE442 magnesium alloys. Lett. Mater., 2018, 8(4s) 538-542
BibTex   https://doi.org/10.22226/2410-3535-2018-4-538-542

Abstract

Two deformation temperatures and two strain rates were selected upon the initial measurement of thermal stability and dependence of m-parameter on strain rate and temperature. Evolution of m-parameter during the tensile tests was measured thank to the periodical switching of the strain rate.In this paper, the possible superplastic behaviour of fine-grained magnesium alloys AE42 and LAE442 alloys were investigated and the first results of this research are shown. Two deformation temperatures and two strain rates were selected upon the initial measurement of thermal stability and dependence of m-parameter on strain rate and temperature. Evolution of m-parameter during the tensile tests was measured thank to the periodical switching of the strain rate. The LAE442 alloy showed significantly higher elongations at the same deformation conditions comparing to the AE42 alloy. The highest values of m-parameter in the last stage of deformation were measured at the temperature of 240 °C and strain rate of 10-4 s-1, regardless much higher grain growth comparing to deformation at 180 °C. Consequently, deformation of ~1.5 (350%) and ~1.3 (270%) was measured for LAE442 and AE42 alloy, respectively. The bottom limit of superplasticity was measured contrary high initial values of m-parameter due to the detrimental effect of grain growth during deformation. Higher values of m-parameter during the deformation and consequently higher elongation observed in LAE442 alloy was attributed to a combination of higher thermal stability and the positive effect of lithium on the activation of non-basal slip systems and diffusion.

References (20)

1. P. Minárik, E. Jablonská, R. Král, J. Lipov, T. Ruml, C. Blawert, B. Hadzima, F. Chmelík. Mater. Sci. Eng. C. 73, 736 (2017).
2. C. Rössig, N. Angrisani, P. Helmecke, S. Besdo, J.-M. Seitz, B. Welke, N. Fedchenko, H. Kock, J. Reifenrath. Acta Biomater. 25, 369 (2015).
3. T. G. Langdon. Acta Mater. 61, 7035 (2013).
4. P. Lukáč, Pokroky Mat. Fyziky Astron. 36, 91 (1991).
5. O. A. Kaibyshev. Superplasticity of Alloys, Intermetallides and Ceramics. Springer, Germany (2011).
6. F. Khan, S. K. Panigrahi. J. Alloys Compd. 747, 71 (2018).
7. Z. Kang, L. Zhou, J. Zhang, Mater. Sci. Eng. A. 633, 59 (2015).
8. S. Kandalam, R. K. Sabat, N. Bibhanshu, G. S. Avadhani, S. Kumar, S. Suwas. Mater. Sci. Eng. A. 687, 85 (2017).
9. B. R. Powell, V. Rezhets, M. P. Balogh, R. A. Waldo. JOM. 54, 34 (2002).
10. F. R. Cao, H. Ding, Y. L. Li, G. Zhou, J. Z. Cui. Mater. Sci. Eng. A. 527, 2335 (2010).
11. K. Edalati, T. Masuda, M. Arita, M. Furui, X. Sauvage, Z. Horita, R. Z. Valiev. Sci. Rep. 7, 2662 (2017).
12. H. Matsunoshita, K. Edalati, M. Furui, Z. Horita, Mater. Sci. Eng. A. 640, 443 (2015).
13. Y. Yoshida, L. Cisar, S. Kamado, Y. Kojima, Mater. Trans. 43, 2419 (2002).
14. P. Minárik, R. Král, J. Čížek, F. Chmelík. Acta Mater. 107, 83 (2016).
15. P. Minárik, R. Král, M. Janeček. Appl. Surf. Sci. 281, 44 (2013).
16. P. Minárik, J. Čížek, J. Veselý, P. Hruška, B. Hadzima, R. Král. Mater. Charact. 127, 248 (2017).
17. P. Lejcek. Grain Boundary Segregation in Metals. Springer Science & Business Media (2010).
18. M. Janeček, T. Krajňák, P. Minárik, J. Čížek, J. Stráská, J. Stráský. IOP Conf. Ser. Mater. Sci. Eng. 194, 012052 (2017).
19. R. Lapovok, Y. Estrin, M. V. Popov, T. G. Langdon. Adv. Eng. Mater. 10, 429 (2008).
20. J. Stráská, J. Stráský, P. Minárik, M. Janeček, B. Hadzima. Mater. Sci. Eng. A. 684, 110 (2017).

Cited by (1)

1.
H.T. Jeong, W.J. Kim. Journal of Magnesium and Alloys. 10(5), 1133 (2022). Crossref

Similar papers