Influence of the temperature of sintering under pressure on the structure and mechanical properties of a composite material AMg2 / γ-Al2O3 nanofibres

A.V. Aborkin, D.M. Babin, A.N. Mochanov, M.I. Alymov show affiliations and emails
Received 26 July 2018; Accepted 17 December 2018;
This paper is written in Russian
Citation: A.V. Aborkin, D.M. Babin, A.N. Mochanov, M.I. Alymov. Influence of the temperature of sintering under pressure on the structure and mechanical properties of a composite material AMg2 / γ-Al2O3 nanofibres. Lett. Mater., 2019, 9(1) 75-80
BibTex   https://doi.org/10.22226/2410-3535-2019-1-75-80

Abstract

The effect of the sintering temperature under pressure on the structural-phase composition, density, hardness, and conditional yield strength of bulk composites based on an AlMg2 alloy reinforced with 1 wt.% γ-Al2O3 nanofibers.A nanocrystalline composite powder based on an AlMg2 alloy reinforced with 1 wt.% γ-Al2O3 nanofibers was obtained in a planetary mill by mechanical synthesis. It was consolidated by sintering under pressure at a temperature of 300 – 450°C and a pressure of 600 MPa. The effect of the temperature of sintering under pressure on the structural-phase composition, density, hardness, and conventional yield stress of bulk composites was studied. For this, X-ray phase analysis, transmission electron microscopy, hydrostatic weighing, and mechanical testing were used. It has been found that an increase in the sintering temperature in this range leads to an increase in the relative density of compacts from 0.87 to 0.98. Based on the results of X-ray diffractometry, the sizes of coherent scattering regions corresponding to bulk composites consolidated at different temperatures are determined. It is shown that an increase in the consolidation temperature from 300 to 400°C leads to a linear increase in the size of coherent scattering regions from 109 to 495 nm, a further increase in temperature to 450°C results in a more intensive growth up to 4.2 μm. In this case, the hardness of the composite material decreases from 206 ±13 to 149 ± 3 HV10, which is due to the occurrence of the reduction processes and the transition of the structure from nanoscale to the micron scale. The maximum conventional yield stress for compression, 791± 58 MPa, corresponds to samples consolidated at 350°C, which is due to the overall effect of dispersion hardening by γ-Al2O3 nanofibres and nanostructuring of the matrix material. An increase in temperature to 450°C neutralizes the effect of nanostructuring and leads to a reduction in the conventional yield stress for compression to 632 ± 30 MPa.

References (27)

1. S. C. Tjong. Adv. Eng. Mater. 9, 639 (2007). Crossref
2. R. Casati, M. Vedani. Metals. 4 (1), 65 (2014). Crossref
3. C. Suryanarayana. Progr. Mater. Sci. 46, 1 (2001).
4. C. Suryanarayana, N. Al-Aqeeli. Progr. Mater. Sci. 58 (4), 383 (2013). Crossref
5. Y-C. Kang, S. L.-I Chan. Materials Chemistry and Physics. 85, 438 (2004). Crossref
6. D. Poirier, R. A. L. Drew, M. L. Trudeau, R. Gauvin. Materials Science and Engineering A. 527, 7605 (2010). Crossref
7. W. Xu, T. Honma, X. Wu, S. P. Ringer, K. Xia. Appl. Phys. Lett. 91, 031901 (2007). Crossref
8. W. Xu, X. Wu, T. Honma, S. P. Ringer, K. Xia. Acta Materialia. 57, 4321 (2009). Crossref
9. R. Casati, A. Fabrizi, A. Tuissi, K. Xia, M. Vedani. Materials Science and Engineering A. 648, 113 (2015). Crossref
10. K. Kallip, N. K. Babu, K. A. AlOgab, L. Kollo, X. Maeder, Y. Arroyo, M. Leparoux. Journal of Alloys and Compounds. 714, 133 (2017). Crossref
11. A. V. Aborkin, D. M. Babin, A. V. Sobol`kov. IOP Conf. Ser.: Material Science and Engineering. 347, 012037 (2018). Crossref
12. P. M. Kelly. Scripta Metallurgica. 6 (8), 647 (1972).
13. R. W. K. Honeycombe. Plastic Deformation of Metals. Hodder Education Group. (1984) 496 p.
14. V. Kukhar, V. Artiukh, A. Prysiazhnyi, A. Pustovgar. E3S Web of Conference. 33, 02031 (2018). Crossref
15. A. V. Aborkin, M. I. Alymov, A. V. Kireev, A. I. Elkin, A. V. Sobol’kov. Nanotechnologies in Russia. 12 (7-8), 395 (2017). (in Russian) [А. В. Аборкин, М. И. Алымов, А. В. Киреев, А. И. Елкин, А. В. Собольков. Российские нанотехнологии. 7 - 8, 66. (2017).]. Crossref
16. V. N. Selivanov, E. F. Smyslov. Industrial Laboratory. 59 (6), 36 (1993). (in Russian) [В. Н. Селиванов, Е. Ф. Смыслов. Заводская лаборатория. 59 (6), 36 (1993).].
17. A. V. Aborkin, M. I. Alymov, A. V. Sobol`kov, K. S. Khor`kov, D. M. Babin. Russian Metallurgy (Metally). 2018 (7), 625 (2018). (in Russian) [А. В. Аборкин, М. И. Алымов, А. В. Собольков, К. С. Хорьков, Д. М. Бабин. Металлы. 4, 27 (2018).]. Crossref
18. C. S. Pande, K. P. Cooper. Progr. Mater. Sci. 54, 689 (2009). Crossref
19. T. H. Courtney. Mechanical Behavior of Materials. McGraw-Hill Book Co. (2000) 733 p.
20. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, T. G. Langdon. Acta Mater. 44 (11), 4619 (1996).
21. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, T. G. Langdon. Philos. Mag. A. 78, 203 (1998).
22. Z. Zhang, D. L. Chen. Mater. Sci. Eng. A. 483 - 484, 148 (2008). Crossref
23. Z. Zhang, D. L. Chen. Scripta Mater. 54, 1321 (2006). Crossref
24. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer. Phys. Rev. B. 62, 4707 (2000).
25. T. C. Chou, D. Adamson, J. Mardinly, T. G. Nieh. Thin Solid Films. 205, 131 (1991).
26. T. G. Nieh, P. Luo, W. Nellis, D. Lesuer, D. Benson. Acta Mater. 44, 3781 (1996).
27. M. Balog, P. Krizik, M. Nosko, Z. Hajovska, M. V. Castro Riglo, W. Rajnerc, D.-S Liu, F. Simancik. Mater. Sci. Eng. A. 613, 82 (2014). Crossref

Cited by (1)

1.
. Inorg. Mater. Appl. Res. 12(5), 1344 (2021). Crossref

Similar papers