Laser cladding of NiCrBSiFe‒WC coating with multichannel laser

L.E. Afanasieva, G.V. Ratkevich
Received: 11 April 2018; Accepted: 16 May 2018
This paper is written in Russian
Citation: L.E. Afanasieva, G.V. Ratkevich. Laser cladding of NiCrBSiFe‒WC coating with multichannel laser. Letters on Materials, 2018, 8(3) 268-273
BibTex   DOI: 10.22226/2410-3535-2018-3-268-273

Abstract

Metalloceramic NiCrBSiFe‒WC coating on structural steel 40Kh was prepared by the method of laser cladding process. The cladding was performed making use of the multichannel continuous СО2 laser radiation.Metalloceramic NiCrBSiFe‒WC coating on structural steel 40Kh was prepared by the method of laser cladding process. The cladding was performed making use of the multichannel continuous СО2 laser radiation on complex model ALTKU3 produced by «Centre of laser technologies» Vladimir. The complex is built on the base of multichannel (40 rays) СО2 laser with output power of 3 kW and technological five-coordinate stand for ray manipulation and that with two coordinates for manipulation of the piece under processing. The prepared samples were examined metallographically. It is shown that at optimal regimes a practically free-pore condition of the composite is formed with minimal root penetration ensuring metallurgical fusion. According to the x-ray spectral microanalysis data the chemical is practically the same as that of the raw powder. In particular, the content of iron in the granules and in the matrix are nearly the same (about 4…5 %). Due to automatization of processing by crossed rollers the sample surface after cladding is nearly flat so that only slight mechanical finishing is required. The thickness of the cladding layer at a single passing is about 700 micrometers. There were no cracks in the plane of the sample. The size of the thermal effect zone in the substrate is about 450 micrometers. The laser cladding with the exploitation of multichannel СО2 laser provides a possibility to prepare high-quality wear-proof coating because, in contrast to single ray lasers, it provides high uniformity of integral heat distribution in the processing zone.

References (21)

1.
A. Khasui, O. Morigaki. Naplavka i napyleniye (eds. V. S. Stepina, N. G. Shesterkina). Moscow, Mashinostroyeniye (1985) 240 p. (in Russian) [А. Хасуи, О. Моригаки. Наплавка и напыление (ред. В. С. Степина, Н. Г. Шестеркина). Москва, Машиностроение (1985) 240 с.]
2.
A. G. Grigor’yants, I. N. Shiganov, A. I. Misyurov. Tekhnologicheskiye protsessy lazernoy obrabotki. Moscow, MGTU (2006) 663 p. (in Russian) [А. Г. Григорьянц, И. Н. Шиганов, А. И. Мисюров. Технологические процессы лазерной обработки. Москва, МГТУ (2006) 663 с.]
3.
R. A. Savray, A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva. Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty). 4, 43 (2014). (in Russian) [Р. А. Саврай, А. В. Макаров, Н. Н. Соболева, И. Ю. Малыгина, А. Л. Осинцева. Обработка металлов (технология, оборудование, инструменты). 4, 43 (2014).]
4.
A. N. Smirnov, E. V. Kozlov, M. V. Radchenko, K. V. Knyaz’kov, V. L. Knyaz’kov. Izv. vuzov. Chernaya metallurgiya. 59(4), 245 (2016). (in Russian) [А. Н. Смирнов, Э. В. Козлов, М. В. Радченко, К. В. Князьков, В. Л. Князьков. Изв. вузов. Черная металлургия. 59(4), 245 (2016).] DOI: 10.17073/0368‑0797‑2016‑4‑245‑250
5.
A. Martın, J. Rodrıguez, J. E. Fernandez, R. Vijande. Wear. 251(1 – 12), 1017 (2001). DOI: 10.1016/S0043-1648(01)00703-7
6.
S. Stewart, R. Ahmed, T. Itsukaichi. Wear. 257(9 – 10), 962 (2004). DOI: 10.1016/j.wear.2004.05.008
7.
N. Serres, F. Hlawka, S. Costil, C. Langlade, F. Machi. J. Therm Spray Tech. 20(1 – 2), 336 (2011). DOI: 10.1007/s11666‑010‑9565‑1
8.
A. D. Pogrebnyak, S. N. Bratushka, M. V. Il’yashenko et al. J. Frict. Wear 32, 84 (2011). DOI: 10.3103/S1068366611020085
9.
B. M. Dhakar, D. K. Dwivedi, S. P. Sharma. Surface Engineering. 28(1), 73 (2012). DOI: 10.1179/1743294411Y.0000000051
10.
S. Stewart, R. Ahmed, T. Itsukaichi. Surface and Coatings Technology. 190(2 – 3), 171 (2005). DOI: 10.1016/j.surfcoat.2004.04.059
11.
V. Stoica, R. Ahmed, T. Itsukaichi, S. Tobe. Wear. 257(11), 1103 (2004). DOI: 10.1016/j.wear.2004.07.016
12.
Z. Bergant, J. Grum. Journal of thermal spray technology. 18(3), 380 (2009). DOI: 10.1007/s11666‑009‑9304‑7
13.
O. V. D’yachenko. Nauka i tekhnika. 2, 13 (2014). (in Belarusian) [О. В. Дьяченко. Наука и техника. 2, 13 (2014).]
14.
M. J. Tobar, C. Alvarez, J. M. Amado, G. Rodríguez, A. Yáñez. Surface and Coatings Technology. 200(22 – 23), 6313 (2006). DOI: 10.1016/j.surfcoat.2005.11.093
15.
D. Deschuyteneer, F. Petit, M. Gonon, F. Cambier. Surface and Coatings Technology. 311, 365 (2017). DOI: 10.1016/j.surfcoat.2016.12.110
16.
J. Przybyłowicz, J. Kusiński. Journal of Materials Processing Technology. 109(1 – 2), 154 (2001). DOI: 10.1016/S0924-0136(00)00790-1
17.
V. I. Yugov, L. Ye. Afanasieva, M. V. Novoselova. Uprochnyayushchiye tekhnologii i pokrytiya. 11, 19 (2016). (in Russian) [Югов В. И., Афанасьева Л. Е., Новоселова М. В. Упрочняющие технологии и покрытия. 11, 19 (2016).]
18.
V. I. Yugov, L. E. Afanasieva, I. A. Barabonova, G. V. Ratkevich. Letters on materials. 7(1), 8 (2017). (in Russian) [В. И. Югов, Л. Е. Афанасьева, И. А. Барабонова, Г. В. Раткевич. Письма о материалах. 7(1), 8 (2017).] DOI: 10.22226/2410‑3535‑2017‑1‑8‑11
19.
M. Bekkert, Kh. Klemm. Sposoby metallograficheskogo travleniya: Sprav. izd. Moscow, Metallurgiya (1988) 400 p. (in Russian) [М. Беккерт, Х. Клемм. Способы металлографического травления: Справ. изд. Москва, Металлургия (1988) 400 c.]
20.
A. F. Belov, N. F. Anoshkin, O. Kh. Fatkullin. Struktura i svoystva granuliruyemykh nikelevykh splavov. Moscow, Metallurgiya (1984) 128 p. (in Russian) [А. Ф. Белов, Н. Ф. Аношкин, О. Х. Фаткуллин. Структура и свойства гранулируемых никелевых сплавов. Москва, Металлургия (1984) 128 с.]
21.
A. S. Kurlov, A. I. Gusev. Russian Chemical Reviews. 75(7), 617 (2006). (in Russian) [Курлов А. С., Гусев А. И. Успехи химии. 75(7), 687 (2006).] DOI: 10.1070/RC2006v075n07ABEH003606