Electron-beam processing of the hardened layer formed on Hardox 450 steel electric-wire welding system Fe-C-V-Cr-Nb-W

S.V. Konovalov, V.E. Kormyshev, Y.F. Ivanov, A.D. Teresov show affiliations and emails
Received 05 August 2016; Accepted 24 November 2016;
This paper is written in Russian
Citation: S.V. Konovalov, V.E. Kormyshev, Y.F. Ivanov, A.D. Teresov. Electron-beam processing of the hardened layer formed on Hardox 450 steel electric-wire welding system Fe-C-V-Cr-Nb-W. Lett. Mater., 2016, 6(4) 350-354
BibTex   https://doi.org/10.22226/2410-3535-2016-4-350-354

Abstract

Implemented a combined surface treatment of steel Hardox 450, is to form layer of electro-contact method, weld powder wire composition of Fe-C-V-Cr-Nb-W, and its subsequent irradiation of high-intensity pulsed electron beam (EBT). Submitted tribological test modified surface and showed an increase of 32.5 times the wear resistance of the irradiated layer compared to the base material. By transmission and scanning electron microscopy studies carried out elemental and phase composition, the defect substructure of steel Hardox 450 and the surface layer deposition, the modified EBT. It is shown that electron-beam treatment of the surface of the deposited layer is accompanied by the formation of a multilayer structure. The interfaces identified layers contain micropores and microcracks, which indicates a high level of compatibility. Revealed the formation of EBT in modified layer multiphase structure represented by α-phase and carbide phases based on niobium, chromium and iron. EBT of the deposited layer surface leads to a drastic decrease the size of the inclusions located both in the modified layer and the deposited metal mainly volume. Prior to EBT inclusions average size of 2.5 µm after the irradiation - 0.6 µm. Deposited metal layer subjected to EBT is in elastically-stressed state, as evidenced by the presence of numerous extinction contour bending, secretions present in the carbide phase. It is shown that the high-speed hardening of the deposited layer, which is realized when it is irradiated with EBT, accompanied by the formation of martensite package with ultra low transverse (40-70 nm) dimensions of the martensite crystals.

References (10)

1. М. Хокинг, В. Васантасри, П. Сидки. Металлические и керамические покрытия. Получение, свойства и применение: Пер. с англ. - М.: Мир, 2000. - 518 с.
2. V. I. Chernoivanov, I. G. Golubev. Restoration of machine parts (Status and Prospects). Moscow, FGNU «Rosinformagroteh». (2010) 376 p. (in Russian) [В. И. Черноиванов, И. Г. Голубев И. Г. Восстановление деталей машин (Состояние и перспективы). М.: ФГНУ «Росинформагротех». 2010. 376 с].
3. Y. Zhirkin. Reliability, maintenance and repair of metallurgical machinery. Magnitogorsk, NSTU. (2002) 330 p. (in Russian) [Ю. В. Жиркин. Надежность, эксплуатация и ремонт металлургических машин. Магнитогорск, НГТУ. 2002. 330 с].
4. А. М. Глезер, В. Е. Громов, Ю. Ф. Иванов, Ю. П. Шаркеев. Наноматериалы: структура, свойства, применение. - Новокузнецк: Изд-во «Интер-Кузбасс», 2012. - 428 с.
5. Структура, фазовый состав и свойства поверхностных слоев титана после электровзрывного легирования и электронно-пучковой обработки / Под ред. В. Е. Громова, Ю. Ф. Иванова, Е. А. Будовских. - Новокузнецк: Изд-во «Интер-Кузбасс», 2012. - 435 с.
6. S. Konovalov, V. Kormyshev, V. Gromov, Yu. Ivanov. Materials Science Forum. 870, 159 - 162 (2016). Crossref
7. В. М. Малыш, М. М. Сорока. Электрическая сварка. - Киев: Техніка, 1986.
8. Yu. F. Ivanov, N. N. Koval. Low-energy electron beams submillisekundnoy duration: reception and some aspects of the application in the field of materials science - Chapter 13 in the book «Structure and properties of advanced metallic materials.» p. 345 - 382 / Ed. A. I. Potekaev. Tomsk: Publishing house of the NTL. (2007) 580 p. (in Russian) [Иванов Ю. Ф., Коваль Н. Н. Низкоэнергетические электронные пучки субмиллисекундной длительности: получение и некоторые аспекты применения в области материаловедения - Гл.13 в книге «Структура и свойства перспективных металлических материалов». - С.345 - 382 / Под общ. ред. А. И. Потекаева. Томск. НТЛ. 2007. 580 с.].
9. V. A. Grishunin, V. E. Gromov, Y. F. Ivanov, A. D. Teresov, S. V. Konovalov. Journal of Surface Investigation 7 (5), 990 - 995 (2013). Crossref
10. N. N. Koval’, Yu. F. Ivanov. Russian Physics Journal 51 (5), 505 - 516 (2008). Crossref

Cited by (4)

1.
Sergey V. Konovalov, V.E. Kormyshev, Yu.F. Ivanov, V.E. Gromov, I.A. Komissarova. MSF. 906, 101 (2017). Crossref
2.
D. Romanov, S. Moskovskii, K. Sosnin, V. Gromov, Y. Ivanov, A. Semin, V. Bataev. Mater. Res. Express. 6(8), 085077 (2019). Crossref
3.
V. E. Gromov, V. E. Kormyshev, A. M. Glezer, S. V. Konovalov, Yu. F. Ivanov. Steel Transl. 48(4), 229 (2018). Crossref
4.
B. Rakhadilov, A. Kengesbekov, L. Zhurerova, R. Kozhanova, Z. Sagdoldina. Machines. 9(2), 24 (2021). Crossref

Similar papers