Structure and shear strength of ultrasonically welded nickel joints

E.R. Shayakhmetova ORCID logo , A.A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov show affiliations and emails
Received 09 November 2023; Accepted 19 November 2023;
Citation: E.R. Shayakhmetova, A.A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov. Structure and shear strength of ultrasonically welded nickel joints. Lett. Mater., 2023, 13(4s) 456-461
BibTex   https://doi.org/10.22226/2410-3535-2023-4-456-461

Abstract

Ultrasonic welding of nickel sheets resulted in the formation of an ultra-fine-grained structure in the joint area. Increasing the welding time caused growth of new grains across the joint interface.Ultrasonic welding (USW) of metals is one of the methods for solid-state joining of thin sheets (foils, tapes) and wires. It can be used for joining similar and dissimilar metals and alloys, fabrication of layered and composite materials. This paper presents the results of assessing the shear strength, area fraction of bonding (AFB), linear weld density (LWD) of joints produced by ultrasonic welding of 0.5 mm thick nickel sheets, of fractographic analysis of fracture surfaces, studies of structural changes in the welded samples. Process conditions for producing lap joints with shear strength of 72 MPa have been established. The AFB in the central joint zone was about 60 % of the fracture surface area, and the LWDs measured at ×200 and ×1000 magnifications were about 60 % and 30 %, respectively. The structure in the bulks of welded sheets after USW differed only slightly from the one of initial sheets. In regions of an approximately 50 µm width adjacent to the junction zone, a developed substructure was formed. A layer of recrystallized grains with an average size of 0.6 µm was formed in the junction zone. Increasing the welding time led to the growth of new grains across the welding interface.

References (37)

1. A. M. Mitzkevich. In: Physics and Technique of Power Ultrasound. V.III. Physical Bases of Ultrasonic Technology (ed. by L.D. Rosenberg). Moscow, Nauka (1970) pp. 71 - 164. (in Russian) [А. М. Мицкевич. В кн.: Физика и техника мощного ультразвука. Т. III. Физические основы ультразвуковой технологии (под ред. Л. Д. Розенберга). Москва, Наука (1970) с. 71 - 164.].
2. M. P. Matheny, K. F. Graff. In: Power Ultrasonics. Applications of High-Intensity Ultrasound (ed. by J. A. Gallego-Juarez, K. F. Graff). Cambridge, Woodhead Publishing (2015) pp. 259 - 293.
3. Schunk Sonosystems GmbH, Wettenberg. Available online: https://www.schunk-sonosystems.com/en/applications/battery-technology (accessed on 09.11.2023).
4. S. S. Lee, C. Shao, T. H. Kim, S. J. Hu, E. Kannatey-Asibu, W. W. Cai, J. P. Spicer, J. A. Abell. J. Manuf. Sci. Eng. 136, 051019 (2014). Crossref
5. M. De Leon, H.-S. Shin. J. Mater. Process. Tech. 307, 117691 (2022). Crossref
6. A. A. Ward, Y. Zhang, Z. C. Cordero. Acta Materialia. 158, 393 (2018). Crossref
7. S. Tokita, C. Y. Liu, Y. S. Sato. Journal of Materials Research and Technology. 26, 7619 (2023). Crossref
8. C. Zhang, H. Li, Q. Liu, C. Huang, K. Zhou. Metals. 13, 29 (2023). Crossref
9. H. Chen, Z. Zhu, Y. Zhu, L. Sun, Y. Guo. Metals. 13, 1410 (2023). Crossref
10. Z. L. Ni, J. J. Yang, Y. X. Hao, L. F. Chen, S. Li, X. X. Wang, F. X. Ye. Int. J. Adv. Manuf. Technol. 107, 585 (2020). Crossref
11. A. A. Mukhametgalina, M. A. Murzinova, A. A. Nazarov. Lett. Mater. 11 (4), 508 (2021). Crossref
12. K. Arimoto, T. Sasaki, Y. Doi, T. Kim. Metals. 9, 505 (2019). Crossref
13. S. Shin, S. Nam, J. Yu, J. Park, D. Kim. Metals. 11, 1195 (2021). Crossref
14. F. Ye, Y. Wang, H. Lu, Y. Guo. Mater. Res. Express. 9, 026527 (2022). Crossref
15. A. A. Mukhametgalina, M. A. Murzinova, A. A. Nazarov. Lett. Mater. 12 (2), 153 (2022). Crossref
16. E. R. Shayakhmetova, M. A. Murzinova, V. S. Zadorozhniy, A. A. Nazarov. Metals. 12, 1865 (2022). Crossref
17. Y. Yang, G. D. Janaki Ram, B. E. Stucker. J. Mater. Process. Technol. 209, 4915 (2009). Crossref
18. J. Yan, Z. Xu, L. Shi, X. Ma, S. Yang. Mater. Design. 32, 343 (2011). Crossref
19. D. Bakavos, P. B. Prangnell. Mater. Sci. Eng. A. 527 (23), 6320 (2010). Crossref
20. B. Sanga, R. Wattal, D. S. Nagesh. Period. Eng. Nat. Sci. 6, 107 (2018). Crossref
21. H. T. Fujii, H. Endo, Y. S. Sato, H. Kokawa. Mater. Charact. 139, 233 (2018). Crossref
22. V. K. Patel, S. D. Bhole and D. L. Chen. Scr. Mater. 65, 911 (2011). Crossref
23. H. T. Fujii, S. Shimizu, Y. S. Sato, H. Kokawa. Scr. Mater. 135, 125 (2017). Crossref
24. Z. Su, Z. Zhu, Y. Zhang, H. Zhang, Q. Xiao. Metals. 11, 61 (2021). Crossref
25. Q. Ma, J. Ma, J. Zhou, X. Zheng, H. Ji. J. Mater. Sci. Technol. 141, 66 (2023). Crossref
26. E. R. Shayakhmetova, М. A. Murzinova, A. A. Nazarov. Metals. 11, 1800 (2021). Crossref
27. J. Yang, B. Cao, Q. Lu. Materials. 10, 193 (2017). Crossref
28. I. E. Gunduz, T. Ando, E. Shattuck, P. Y. Wong, C. C. Doumanidis. Scr. Mater. 52, 939 (2005). Crossref
29. J.-Y. Lin, S. Nambu, T. Koseki. Scr. Mater. 178, 218 (2020). Crossref
30. A. A. Mukhametgalina, M. A. Murzinova, A. A. Nazarov. Metall. Mater. Trans. A. 53, 1119 (2022). Crossref
31. J.-Y. Lin, K.-C. Hu, T.-L. Hsieh, H.-E. Chu. Scr. Mater. 237, 115724 (2023). Crossref
32. A. Murzinova, E. R. Shayakhmetova, A. A. Mukhametgalina, A. A. Sarkeeva, A. A. Nazarov. Metals. 13, 1661 (2023). Crossref
33. F. J. Humphreys. Scr. Mater. 51, 771 (2004). Crossref
34. S. S. Lee, T. H. Kim, S. J. Hu, W. W. Cai, J. Li, J. A. Abell. J. Manuf. Sci. Eng. 135, 021004 (2013). Crossref
35. Р. S. Kelly, S. G. Advani, J. W. Gillespie Jr, T. A. Bogetti. J. Mater. Process. Technol. 213, 1835 (2013). Crossref
36. E. De Vries. Mechanics and Mechanism of Ultrasonic Metal Welding, Dissertation, The Ohio State University (2004).
37. N. P. Gurao, S. Satyam. Sci. Rep. 4, 5641 (2014). Crossref

Similar papers

Funding

1. Grant of the Republic of Bashkortostan for young scientists -