Nanowisker structures of copper oxide under conditions of exposure to temperature fields and corrosive media

N.N. Gryzunova, A.A. Vikarchuk, V.V. Bekin, V.S. Firsov, A.M. Gryzunov show affiliations and emails
Received 28 April 2018; Accepted 05 June 2018;
This paper is written in Russian
Citation: N.N. Gryzunova, A.A. Vikarchuk, V.V. Bekin, V.S. Firsov, A.M. Gryzunov. Nanowisker structures of copper oxide under conditions of exposure to temperature fields and corrosive media. Lett. Mater., 2018, 8(3) 294-298
BibTex   https://doi.org/10.22226/2410-3535-2018-3-294-298

Abstract

Whisker structures formed on the surface of the defective crystals layersCopper oxide nanowhiskers are of interest as potential sensors, photodetectors, catalysts, and photocatalysts. The paper presents data of research related to the problems of using copper (II) oxide nanowhiskers under the influence of temperature fields and corrosive environment. By way of such influence, the catalytic oxidation of carbon monoxide and methyl alcohol (methanol) is considered. The arrays of nanowhiskers are obtained by annealing two types of copper coatings in an oxygen-containing atmosphere. One type of coatings was grown by the method of electrodeposition with mechanical activation of the cathode, and the other - without it. In the first case, coatings consisting of large defective crystals were formed, and in the second case, coatings made of nanocrystalline copper were formed. It is shown that in both cases, annealing of copper coatings led to the formation in them layers consisting of copper oxides. Both coatings showed high activity in the catalytic oxidation of carbon monoxide and methyl alcohol, but the sample obtained without mechanical activation during electrodeposition entered into the reaction much earlier than the sample obtained with mechanical activation. This may be due to a higher concentration of whiskers on the surface of the first sample. However, with prolonged tests, activity of the first sample decreased more rapidly than activity of the sample obtained with mechanical activation. In the authors' opinion, the decrease in the activity of the samples in oxidation reactions is due to the destruction of nanowhiskers, which is caused by a change of the crystal lattice size because of their partial reduction. Applications of nanowhiskers are proposed.

References (20)

1. P. R. Shukla, Sh.Wang, H. Ming Ang, M. O. Tadé. Separation and Purification Technology. 70, 338 (2010).
2. H. Benhebal, M. Chaib, A. Leonard, S. D. Lambert, M. Crine. Materials Science in Semiconductor Processing. 15, 264 (2012).
3. R. B. Raj, M. Umadevi, V. P. Parvathi and R. Parimaladevi. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7, 045008 (2016).
4. R. Poreddy, C. Engelbrekt, A. Riisager. Catal. Sci. Technol. 5, 2467 (2015).
5. D. M. Matthew, J. M. Colin et al. ACS Catalysis. 5(12), 1916 (2015).
6. M. Y. Hamid, A. Ehab. Indian Journal of Science and Technology. 7(12), 7371 (2014).
7. Y. Z. Feng, X. L. Zheng. Nano Lett. 10, 4762 (2010).
8. Y. Feng, P. M. Rao, D. R Kim, X. Zheng. P. Combust. Inst. 33, 3169 (2011).
9. M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S. Varma. Chem. Rev. 116, 3722 (2016).
10. Q. Zahng, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang. Prog. Mater. Sci. 60, 208 (2014).
11. A. N. Priezzheva, M. V. Dorogov, M. N. Tyurkov et al. Bulletin of the Russian Academy of Sciences: Physics. 9(79), 1098 (2015). (in Russian) [А. Н. Приезжева, М. В. Дорогов, М. Н. Тюрьков и др. Известия Российской академии наук. Серия физическая. 9(79), 1243 (2015).].
12. A. N. Abramova, A. A. Vikarchuk. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta. 3(25), 105 (2013). (in Russian) [А. Н. Абрамова, А. А. Викарчук. Вектор науки Тольяттинского государственного университета. 3(25), 105 (2013).].
13. N. N. Gryzunova, A. A. Vikarchuk, V. V. Bekin, A. E. Romanov. Bulletin of the Russian Academy of Sciences: Physics. 79(9), 1093 (2015). (in Russian) [Н. Н. Грызунова, А. А. Викарчук, В. В. Бекин, А. Е. Романов. Известия Российской академии наук. Серия физическая. 79(9), 1238 (2015).].
14. N. N. Gryzunova, A. A. Vikarchuk, M. N. Tyur’kov. Russian Metallurgy (Metally). 10, 924 (2016). (in Russian) [Н. Н. Грызунова, А. А. Викарчук, М. Н. Тюрьков. Деформация и разрушение материалов. 2, 13 (2016).].
15. N. N. Gryzunova, A. A. Vikarchuk, A. M. Gryzunov, A. E. Romanov. Materials Physics and Mechanics. 2(32), 144 (2017).
16. N. N. Gryzunova. Letters on Materials. 1(7), 39 (2017) (in Russian) [Н. Н. Грызунова. Письма о материалах. 7(1), 39 (2017).]. Crossref
17. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang. Progress in Materials Science. 60, 208 (2014).
18. Y. H. Cheng, Y. J. Lin, J. P. Xu, J He, T. Z. Wang, G. J. Yu, D. W. Shao, W.−H. Wang, F. Lu, L. Li, X. W. Du, W. Wang, H. Liu, R. Zheng. Appl. Surf. Sci. 366, 120 (2016).
19. U. Nerle, M. K. Rabinal. IOSR Journal of Applied Physics. 5, 01 (2013).
20. C. J. Love, J. D. Smith, Y. H. Cui, K. K. Varanasi. Nanoscale. 3, 4972 (2011).

Similar papers