Features of deformation and breaking for Ni nanowire

M.D. Starostenkov, M.M. Aish show affiliations and emails
Received  31 March 2014; Accepted  16 June 2014
Citation: M.D. Starostenkov, M.M. Aish. Features of deformation and breaking for Ni nanowire. Lett. Mater., 2014, 4(2) 89-92
BibTex   https://doi.org/10.22226/2410-3535-2014-2-89-92

Abstract

 Molecular Dynamics (MD) simulations have been carried out on pure Nickel (Ni) crystal with face-centered cubic (FCC) lattice upon application of uniaxial tension at nanolevel with a speed of 20 m/s. The deformation corresponds to the direction <001>. To the calculated block of crystal - free boundary condi-tions are applied in the directions <100>, <010>. A many-body interatomic potential for Ni within the sec-ond-moment approximation of the tight-binding model (the Cleri and Rosato potentials) was employed to carry out three dimensional molecular dynamics simulations. A computer experiment is performed at a tem-perature corresponding to 10K, 300Kand 1000K. MD simulation used to investigate the effect of long of Ni nanowire on the nature of deformation and fracture. The feature of deformation energy can be divided into four regions: quasi-elastic, plastic, flow and failure. The nature of deformation, slipping, twinning and neck-ing were studied. Stress decreased with increasing volume. The results showed that breaking position de-pended on the nanowire length.

References (27)

1. F. Ercolessi, J.B. Adams. Europhys. Lett. 26, 583 (1994).
2. Y. Mishin, D. Farkas, M.J. Mehl andD.A. Papaconstantopoulos. Phys.Rev. B. 59, 3393 (1999).
3. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress. Phys.Rev. B. 63 224106 (2001).
4. Y. Mishin, M.J. Mehl and D.A. Papaconstantopoulos.Phys.Rev. B. 65, 224114 (2002).
5. R.R. Zope and Y. Mishin. Phys.Rev. B. 68, 024102 (2003).
6. A. Strachan, T. Cagin, O. Gu¨lseren, S. Mukherjee, R.E. Cohen and W.A. Goddard. Model. Simul. Mater. Sci.Eng. 12, S445 (2004).
7. Y. Mishin, M.J. Mehl and D.A. Papaconstantopoulos.Acta Mater. 53, 4029 (2005).
8. Y. Mishin and A.Y. Lozovoi. Acta Mater. 54, (2006) 5013.
9. H. Chamati, N. Papanicolaou, Y. Mishin andD.A. Papaconstantopoulos. Surf. Sci. 600, 1793 (2006).
10. I.J. Robertson, V. Heine and M.C. Payne. Phys.Rev. Lett.70, 1944 (1993).
11. S.L. Frederiksen, K.W. Jacobsen, K. S. Brown andJ.P. Sethna. Phys.Rev. Lett. 93, 165501 (2004).
12. F. Cleri and V. Rosato. Phys.Rev. B. 48, 22 (1993).
13. E.F. Rexer, J. Jellinek, E.B. Krissinel, and E.K. Parks.J. Chem. Phys. 117, 82 (2002).
14. S. Darby, T.V. Mortimer-Jones, R.L. Johnston, andC. Roberts. J. Chem. Phys. 116, 1536 (2002).
15. K. Michaelian, M.R. Beltran, and I.L. Garzon.Phys.Rev. B. 65, 041403(R) (2002).
16. R.I. Babicheva, K.A. Bukreeva, S.V. Dmitriev, R.R.Mulyukov, K. Zhou, Intermetallics 43, (2013) 171.
17. K.A. Bukreeva, R.I. Babicheva, S.V. Dmitriev, K. Zhou, R.R. Mulyukov, JETP Lett. 98, (2013) 91.
18. R.I. Babicheva, K.A. Bukreeva, S.V. Dmitriev, K. Zhou, Computational Materials Science 79, (2013) 52.
19. K.A. Bukreeva, R.I. Babicheva, S.V. Dmitriev, K. Zhou, R.R. Mulyukov, Phys. Solid State 55, (2013) 1963.
20. M. Starostenkov, A. Yashin, N. Sinica. Key EngineeringMaterials. 592-593, 51 (2013).
21. M.M. Aish, M.D. Starostenkov. Mater.Phys.Mech. 18(1), 53 (2013).
22. M.D. Starostenkov, M.M. Aish, A.A. Sitnikov, S.A. Kotrechko. Letters on Mater. 3, 180 (2013).
23. K.A. Bukreeva, R.I. Babicheva, S.V. Dmitriev, K. Zhou, R.R. Mulyukov, A.I. Potekaev. Russian Physics Journal.57(1), 69 (2014).
24. M.D. Starostenkov, M.M. Aish, A.V. Yashin. E-MRS 2013FALL MEETING September 16-20. Warsaw Universityof Technology, Warsaw, Poland.
25. M.D. Starostenkov, M.M. Aish. 3rd InternationalConference on Mathematics & Information Science(ICMIS 2013), Luxor, Egypt, Dec. 28-30, 2013.
26. M.M. Aish, M.D. Starostenkov. SOP Transactions onNano-technology. (in press).
27. M.M. Aish, M.D. Starostenkov. E-MRS 2013 FALLMEETING September 16-20. Warsaw University ofTechnology, Warsaw, Poland.

Cited by (4)

1.
S. Xiao, Y. Kong, Y. Qiu, Y. Du. Computational Materials Science. 117, 180 (2016). Crossref
2.
M. M., A. S.. Int. J. Phys. Sci. 15(3), 99 (2020). Crossref
3.
M. Gupta, A. Shankhdhar, A. Kumar, A. Vermon, A. Singh, V. Panwar. Materials Today: Proceedings. 43, 395 (2021). Crossref
4.
K. Shen, N. Cheng, J. Zhao, J. Hou. Computational Materials Science. 213, 111486 (2022). Crossref

Similar papers