Plastic deformation of titanium alloy Ti-6Al-4V in a complex stressed state under tension at high-strain rates

V.V. Skripnyak, K.V. Iohim, E.G. Skripnyak, V.A. Skripnyak show affiliations and emails
Received 01 March 2021; Accepted 15 May 2021;
This paper is written in Russian
Citation: V.V. Skripnyak, K.V. Iohim, E.G. Skripnyak, V.A. Skripnyak. Plastic deformation of titanium alloy Ti-6Al-4V in a complex stressed state under tension at high-strain rates. Lett. Mater., 2021, 11(3) 267-272
BibTex   https://doi.org/10.22226/2410-3535-2021-3-267-272

Abstract

The results of experiments on tension of the Ti-6Al-4V alloy in the range of strain rates from 0.1 to 1000 1 / s under uniaxial and complex stress states are presented.
It was found that Ti-6Al-4V alloy exhibits a transition in fracture behavior from ductile to brittle at the stress state triaxiality parameter range from 0.44 to 0.497.The article presents the results of a studies on mechanical behavior of titanium alloy Ti-6Al-4V (Ti Grade 5) in the range of strain rates from 0.1 to 103 s−1. Tensile tests were carried out on flat and notched specimens using the Instron VHS 40/50-20 servo-hydraulic testing machine. High-speed video recording was carried out with a Phantom 711 Camera. The strain fields in the measuring area of the sample were investigated by the Digital Image Correlation (DIC) method. Analysis of the deformation fields of Ti-6Al-4V specimens under uniaxial tension at high strain rates revealed the presence of stationary localized shear bands at the initial stages of strain hardening. The evolution of the deformation fields in the studied loading regime indicates that in the localization bands the plastic strain is significantly higher than the average values in the gage zone of the specimen. It was found that the value of strain before fracture of the Ti-6Al-4V alloy in the zone of strain localization increases with the tension strain rate. The fracture of the titanium alloy is a result of cracks formation in the zone of plastic strain localization bands oriented along the surface of the action of the maximum shear stresses. The results obtained confirm the ductile nature of fracture of Ti-6Al-4V at strain rates from 0.1 to 103 s−1, at the triaxiality stress parameter 0.33 < η < 0.44, and at an initial temperature of 295 K. At the same time, Ti-6Al-4V alloy demonstrates a tendency to embrittlement with an increase in the triaxiality stress parameter to 0.497 at the same loading condition.

References (19)

1. M. Peters, C. Leyens. Titanium and Titanium Alloys. Weinheim, Wiley-VCH (2003) 513 p.
2. T. B. Britton, F. P. E. Dunne, A. J. Wilkinson. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science. 471 (2178), 20140881 (2015). Crossref
3. Z. Xu, X. He, H. Hu, P. Tan, Y. Liu, F. Huang. Int. J. Impact Eng. 130, 281 (2019). Crossref
4. Y. Ren, S. Zhou, W. Luo, Z. Xue, Y. Zhang. IOP Conference Series: Materials Science and Engineering. 322, 022022 (2018). Crossref
5. R. Ya. Lutfullin, A. A. Kruglov, R. V. Safiullin, M. K. Mukhametrahimov, O. A. Rudenko. Materials Science and Engineering A. 503, 52 (2009). Crossref
6. R. Y. Lutfullin, M. K. Mukhametrakhimov. Met. Sci. Heat. Treat. 48, 54 (2006). Crossref
7. Y. Long, W. Zhang, L. Peng, H. Peng, X. Li, X. Huang. Metall. Mater. Trans. A. 51, 4765 (2020). Crossref
8. S. Roy, S. Suwas. J. Alloys Compd. 548, 110 (2013). Crossref
9. V. V. Skripnyak, E. G. Skripnyak, V. A. Skripnyak. Metals. 10 (3), 305 (2020). Crossref
10. V. A. Skripnyak, V. V. Skripnyak, E. G. Skripnyak, N. V. Skripnyak. Int. J. Mech. Mater. Design. 16, 215 (2020). Crossref
11. Yu. P. Sharkeev, V. P. Vavilov, O. A. Belyavskaya, V. A. Skripnyak, D. A. Nesteruk, A. A. Kozulin, V. M. Kim. J. Nondestr. Eval. 35, 42 (2016). Crossref
12. Yu. P. Sharkeev, V. P. Vavilov, V. A. Skripnyak, V. A. Klimenov, O. A. Belyavskaya, D. A. Nesteruk, A. A. Kozulin, A. I. Tolmachev. Russ. J. Nondest. 47 (10), 701 (2011). Crossref
13. J. Huang, Y. Guo, D. Qin, Z. Zhou, D. Li, Y. Li. Theor. Appl. Fract. Mech. 97, 48 (2018). Crossref
14. C. M. Cepeda-Jiménez, F. Carreño, O. A. Ruano, A. A. Sarkeeva, A. A. Kruglov, R. Lutfullin. Mater. Sci. Eng. A. 563, 28 (2013). Crossref
15. S. Nemat-Nasser, W. G. Guo, V. F. Nesterenko, S. S. Indrakanti, Y. B. Gu. Mech Mater. 33, 425 (2001). Crossref
16. J. Blaber, B. Adair, A. Antoniou. Ncorr. Exp. Mech. 55, 1105 (2015). Crossref
17. Y. Bai, T. Wierzbicki. Int. J. Plast. 24, 1071 (2008). Crossref
18. Y. Bai, T. Wierzbicki. J. Eng. Mater. Technol. 131, 021002 (2009). Crossref
19. H. Hu, Z. Xu, W. Dou, F. Huang. Int. J. Impact Eng. 145, 103689 (2020). Crossref

Similar papers

Funding

1. Russian Science Foundation - 20-79-00102.