Investigation of Cu5Zr particles precipitation in Cu-Zr and Cu-Cr-Zr alloys subjected to quenching and high strain rate deformation

I.V. Khomskaya, V.I. Zel'dovich, N.Y. Frolova, D.N. Abdullina, A.E. Kheifets show affiliations and emails
Received 22 July 2019; Accepted 27 August 2019;
Citation: I.V. Khomskaya, V.I. Zel'dovich, N.Y. Frolova, D.N. Abdullina, A.E. Kheifets. Investigation of Cu5Zr particles precipitation in Cu-Zr and Cu-Cr-Zr alloys subjected to quenching and high strain rate deformation. Lett. Mater., 2019, 9(4) 400-404
BibTex   https://doi.org/10.22226/2410-3535-2019-4-400-404

Abstract

Rod–shaped  particle of Cu5Zr formed in Cu–0.21%Cr–0.20%Zr alloy after quenching and annealing at 700°C for 1 h. The particles consist of thin twin-like layers with a thickness of 6-7 nm. The ratio of atomic concentrations of copper and zirconium in this particle was 5.6 : 1 that is close to the stoichiometry of the equilibrium Cu5Zr phaseThe paper studies the decomposition of a supersaturated solid solution with a precipitate of particles of the copper-zirconium phase in the Cu-0.06  wt.% Zr and Cu-0.21  wt.% Cr-0.20  wt.% Zr alloys in two initial states, i. e. after solid-solution quenching and after high strain rate deformation (105 s−1) by the method of dynamic channel-angular pressing (DCAP). It has been shown that the decomposition of the supersaturated solid-solution of zirconium in copper in the quenched micro-alloyed Cu-Zr and low-alloyed Cu-Cr-Zr alloys occurs in two stages. At the first stage, nanoparticles of a metastable copper-zirconium phase are formed. The crystal structure of the nanoparticles is close to the structure of the copper matrix. At the second stage, particles of the equilibrium Cu5Zr phase are formed in the form of rods. Annealing (aging) of the alloys deformed by DCAP is characterized by the predominance of heterogeneous precipitation of Cu5Zr nanoparticles at sub-grain boundaries and dislocations, and the decomposition begins at a lower temperature. The particle size is less by an order of magnitude than that in the quenched state. The precipitation of nanoparticles at dislocations retards the formation of recrystallization centers. It has been shown that the treatment including DCAP and annealing at 450°C for 1 h substantially increases microhardness of the micro-alloyed Cu-0.06 %Zr alloy by a factor of 2.7 as compared to the initial quenched state. This behavior is related to substantial structure refinement during DCAP and decomposition of the supersaturated α-solid solution of copper.

References (18)

1. O. E. Osintsev, V. N. Fedorov. Copper and Copper Alloys: Domestic and Foreign Grades. A Handbook. Moscow, Mashinostroenie (2004) 336 p. (in Russian). [О.Е. Осинцев, В.Н. Федоров. Медь и медные сплавы. Отечественные и зарубежные марки. Справочник. Москва, Машиностроениею (2004) 336 с.].
2. H. Suzuki, M. Kanno. J. Jpn. Inst. Metals. 36, 363 (1972). Crossref
3. T. Nagai, Z. Henmi, T. Sakamoto, S. Koda. J. Jpn. Inst. Metals. 36, 564 (1972). Crossref
4. P. Forey, J.-L. Glimois, J.-L. Feron, G. Develey, C. Becle. Compt. Rendue Acad. Sc. Paris, Ser. C. 291, 177 (1980).
5. A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V. I. Kopylov. Acta Mater. 50, 1639 (2002). Crossref
6. R. R. Mulyukov, R. M. Imayev, A. A. Nazarov. J. Mater. Sci. 43, 7257 (2008). Crossref
7. S. V. Dobatkin, D. V. Shangina, N. R. Bochvar, M. Janeček. Mater. Sci. Eng. A. 598, 288 (2014). Crossref
8. G. Purcek, H. Yanar, D. V. Shangina, M. Demirtas, N. R. Bochvar, S. V. Dobatkin. Journal of Alloys and Compounds. 742, 325 (2018). Crossref
9. A. P. Zhilyaev, A. Morozova, J. M. Cabrera, R. Kaibyshev, T. G. Langdon. J. Mater. Sci. 52, 305 (2017). Crossref
10. V. Zel’dovich, E. Shorokhov, N. Frolova, I. Zhgiliev, A. Kheifetz, I. Khomskaya. Int. J. Mat. Res. 100, 830 (2009). Crossref
11. I. G. Brodova, E. V. Shorokhov, A. N. Petrova, I. G. Shirinkina, I. V. Minaev, I. N. Zhgilev, A. V. Abramov. Rev. Adv. Mater. Sci. 25, 128 (2010).
12. I. V. Khomskaya, E. V. Shorokhov, V. I. Zel’dovich, A. E. Kheifets, N. Yu. Frolova, P. A. Nasonov, A. A. Ushakov, I. N. Zhgilev. The Physics of Metals and Metallography. 111, 612 (2011). Crossref
13. V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, P. A. Nasonov. The Physics of Metals and Metallography. 114, 411 (2013). Crossref
14. I. V. Khomskaya, A. E. Kheifets, V. I. Zel’dovich, L. G. Korshunov, N. Yu. Frolova, D. N. Abdullina. Letters on Materials. 8, 410 (2018). Crossref
15. Phase Diagrams of Binary Metal Systems. A Handbook. Vol. 2 (ed. by N. P. Lyakishev). Moscow, Mashinostroenie (1997) 1024 p. (in Russian). [Диаграммы состояния двойных металлических систем. Справочник. T. 2 (под ред. Н.П. Лякишева). Москва, Машиностроение (1997) 1024 с.].
16. M. E. Drits, N. R. Bochvar, L. S. Guzei, et. al. Binary and Multicomponent Copper-Based Systems. A Handbook. Moscow, Nauka (1979) 248 p. (in Russian). [М.Е. Дриц, Н.Р. Бочвар, Л.С. Гузей и др. Двойные и многокомпонентные системы на основе меди. Справочник. Москва, Наука (1979) 248 с.].
17. V. A. Phillips. Metallography. 7, 137 (1974). Crossref
18. Physical metallurgy (ed. by R. W. Cahn, P. Haasen). Elsevier SciencePublisher VB, Amsterdam (1983) 624 p.

Similar papers

Funding

1. The present work was accomplished according to the State Assignment theme “Structure” . - reg. № АААА-А18-118020190116 -6