Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing

N. Zolotorevsky, V. Rybin, E. Ushanova, I. Brodova, A. Petrova, N. Ermakova
Received: 30 August 2017; Revised: 12 September 2017; Accepted: 12 September 2017
Citation: N. Zolotorevsky, V. Rybin, E. Ushanova, I. Brodova, A. Petrova, N. Ermakova. Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing. Letters on Materials, 2017, 7(4) 363-366
BibTex   DOI: 10.22226/2410-3535-2017-4-363-366

Abstract

Twin-oriented bands up to 20 m in width appear near grain boundaries of coarse-grained aluminum during single pass of dynamic channel angular pressing. Analysis of their deviations from the ideal twin misorientation showed that they could be formed both at an early and at a later stage of deformation.Experimental evidence of deformation twinning in coarse-grained aluminium is presented for the first time using electron backscatter diffraction technique. This phenomenon occurs when using a novel method of severe plastic deformation referred to as dynamic channel angular pressing. A pressing die had two channels of equal cross-section intersecting at an angle of 90°. Special gun accelerated the sample up to the rate of 100 m s^(-1) and directed it into the die. As a result, the strain rate was about 10^5 s^(-1). Twin-oriented mesobands of 3 to 20 μm in width appear predominantly near grain boundaries after deformation. Crystallographic peculiarities of the mesobands formed in two different grains were examined in detail. Analysis of a deviation of their misorientations from the ideal twin misorientation showed that the first mesoband family could be formed at an early stage of the first pass of the dynamic channel angular pressing, while the second family – at a later stage. The mesobands were suggested to form by successive nucleation and coalescence of microscopic twins during the shear localization. Results have shown that, deformation twinning occurs in aluminum, which is characterized by higher stacking fault energy and higher dislocation mobility, only under high strain-rate dynamic deformation.

References (28)

1.
V. V. Rybin. Large plastic deformation and ductile failure of metals. Metallurgiya, Moscow. (1986) 224 p. (in Russian). [В. В. Рыбин. Большие пластические деформации и разрушение металлов. Металлургия, Москва. (1986) 224 с.]
2.
D. A. Hughes, N. Hansen. Acta Mater. 45, 3871 (1997).
3.
F. J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena. Elsevier. (2004) 605 p.
4.
T. G. Langdon. Acta Mater. 61, 7035 (2013). DOI: 10.1016/j.actamat.2013.08.018
5.
I. G. Brodova, I. G. Shirinkina, O. A. Antonova, E. V. Shorokhov, I. I. Zhgilev. Mater. Sci. Eng. A503, 103 (2009). DOI: 10.1016/j.msea.2007.12.060
6.
V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, V. I. Kopylov. Russ. Met. 1, 99 (1981) (in Russian). [В. М. Сегал, В. И. Резников, А. Е. Дробышевский, В. И. Копылов. Пластическая обработка металлов простым сдвигом. Известия АН СССР. Металлы. 1, 115 (1981)].
7.
R. Z. Valiev, T. G. Langdon. Progress in Mater. Sci. 51, 881 (2006).
8.
I. G. Brodova, E. V. Shorokhov, I. G. Shirinkina, I. N. Zhgilev, T. I. Yablonskikh, V. V. Astaf’ev, O. V. Antonova. Physics of Metals and Metallography. 105 (6), 594 (2008). DOI: 10.1134/S0031918X08060100
9.
V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets, I. V. Khomskaya, V. M. Gundyrev. Physics of Metals and Metallography. 105 (4), 402 (2008). DOI: 10.1134/S0031918X08040145
10.
I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets. Physics of Metals and Metallography. 105 (6), 586 (2008). DOI: 10.1134/S0031918X08060094
11.
I. G. Brodova, E. V. Shorokhov, A. N. Petrova, I. G. Shirinkina, I. V. Minaev, I. N. Zhgilev, A. V. Abramov. Rev. Adv. Mater. Sci. 25, 128 (2010).
12.
Y. Xu, J. Zhang, Y. Bai, M. A. Meyers. Metal.Mater.Trans. 39A, 811 (2008). DOI: 10.1007/s11661-007-9431-z
13.
O. Johari, G. Thomas. Acta Metall. 12, 1153 (1964).
14.
V. V. Rybin, N. Yu. Zolotorevsky, E. A. Ushanova, Technical Physics. 59 (12), 1819 (2014). DOI: 10.1134/S106378421412024X
15.
V. V. Rybin, N. Yu. Zolotorevsky, E. A. Ushanova. Physics of Metals and Metallography. 116 (7), 730 (2015). DOI: 10.1134/S0031918X1507011X
16.
I. J. Beyerlein, X. Zhang, A. Misra. Annu. Rev. Mater. Res. 44, 329 (2014). DOI: 10.1146/annurev-matsci-070813-113304
17.
M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. M. Wang, X. Cheng. Science. 300 (5623), 1275 (2003). DOI: 10.1126/science.1083727
18.
X. Z. Liao, F. Zhou, E. J. Lavernia, D. W. He, Y. T. Zhu. Appl. Phys. Lett. 83, 5062 (2003). DOI: 10.1063/1.1633975
19.
M. Yu. Gutkin, I. A. Ovid’ko and N. V. Skiba. Phys. Rev. B74, 172107 (2006). DOI: 10.1103/PhysRevB.74.172107
20.
R. C. Pond, L. M. F. Garcia-Garcia. Inst. Phys. Conf. Ser. 61, 495 (1981).
21.
S. Hai, E. B. Tadmor. Acta Mater. 51, 117 (2003). DOI: 10.1016/S1359-6454(02)00367-1
22.
F. Zhao, L. Wang, D. Fan, B. X. Bie, X. M. Zhou, T. Suo, Y. L. Li, M. W. Chen, C. L. Liu, M. L. Qi, M. H. Zhu, S. N. Luo. Phys. Rev. Lett. 116, 075501 (2016). DOI: 10.1103/PhysRevLett.116.075501
23.
F. Bachmann, R. Hielscher, H. Schaeben. Solid State Phenom. 160, 63 (2010). DOI: 10.4028/www.scientific.net/SSP.160.63
24.
P. Cizek, A. Whiteman, M. Rainforth. Journal of Microscopy. 213 (3), 285 (2004). DOI: 10.1111/j.0022-2720.2004.01305.x
25.
D. Jorge-Badiolga, A. Iza-Mendia, I. Gutierrez. Journal of Microscopy. 235 (1), 36 (2009).
26.
N. Yu. Zolotorevsky, N. Yu. Ermakova, V. S. Sizova, E. A. Ushanova, V. V. Rybin. J. Mater. Sci. 52, 4172 (2017). DOI: 10.1007/s10853-016-0510-7
27.
H. Alimadadi, A. Bastos, K. Pantleon. Proceeding of 33rd Risø International Symposium on Materials Science. 33, 175 (2012).
28.
H. Miyamoto, A. Vinogradov, S. Hashimoto, R. Yoda. Mat. Trans. 50, 1924 (2009). DOI: 10.2320/matertrans.M2009054