Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing

N. Zolotorevsky, V. Rybin, E. Ushanova, I. Brodova, A. Petrova, N. Ermakova show affiliations and emails
Received: 30 August 2017; Revised: 12 September 2017; Accepted: 12 September 2017
Citation: N. Zolotorevsky, V. Rybin, E. Ushanova, I. Brodova, A. Petrova, N. Ermakova. Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing. Lett. Mater., 2017, 7(4) 363-366
BibTex   https://doi.org/10.22226/2410-3535-2017-4-363-366

Abstract

Twin-oriented bands up to 20 m in width appear near grain boundaries of coarse-grained aluminum during single pass of dynamic channel angular pressing. Analysis of their deviations from the ideal twin misorientation showed that they could be formed both at an early and at a later stage of deformation.Experimental evidence of deformation twinning in coarse-grained aluminium is presented for the first time using electron backscatter diffraction technique. This phenomenon occurs when using a novel method of severe plastic deformation referred to as dynamic channel angular pressing. A pressing die had two channels of equal cross-section intersecting at an angle of 90°. Special gun accelerated the sample up to the rate of 100 m s^(-1) and directed it into the die. As a result, the strain rate was about 10^5 s^(-1). Twin-oriented mesobands of 3 to 20 μm in width appear predominantly near grain boundaries after deformation. Crystallographic peculiarities of the mesobands formed in two different grains were examined in detail. Analysis of a deviation of their misorientations from the ideal twin misorientation showed that the first mesoband family could be formed at an early stage of the first pass of the dynamic channel angular pressing, while the second family – at a later stage. The mesobands were suggested to form by successive nucleation and coalescence of microscopic twins during the shear localization. Results have shown that, deformation twinning occurs in aluminum, which is characterized by higher stacking fault energy and higher dislocation mobility, only under high strain-rate dynamic deformation.

References (28)

1. V. V. Rybin. Large plastic deformation and ductile failure of metals. Metallurgiya, Moscow. (1986) 224 p. (in Russian). [В. В. Рыбин. Большие пластические деформации и разрушение металлов. Металлургия, Москва. (1986) 224 с.].
2. D. A. Hughes, N. Hansen. Acta Mater. 45, 3871 (1997).
3. F. J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena. Elsevier. (2004) 605 p.
4. T. G. Langdon. Acta Mater. 61, 7035 (2013). Crossref
5. I. G. Brodova, I. G. Shirinkina, O. A. Antonova, E. V. Shorokhov, I. I. Zhgilev. Mater. Sci. Eng. A503, 103 (2009). Crossref
6. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, V. I. Kopylov. Russ. Met. 1, 99 (1981) (in Russian). [В. М. Сегал, В. И. Резников, А. Е. Дробышевский, В. И. Копылов. Пластическая обработка металлов простым сдвигом. Известия АН СССР. Металлы. 1, 115 (1981)].
7. R. Z. Valiev, T. G. Langdon. Progress in Mater. Sci. 51, 881 (2006).
8. I. G. Brodova, E. V. Shorokhov, I. G. Shirinkina, I. N. Zhgilev, T. I. Yablonskikh, V. V. Astaf’ev, O. V. Antonova. Physics of Metals and Metallography. 105 (6), 594 (2008). Crossref
9. V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets, I. V. Khomskaya, V. M. Gundyrev. Physics of Metals and Metallography. 105 (4), 402 (2008). Crossref
10. I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets. Physics of Metals and Metallography. 105 (6), 586 (2008). Crossref
11. I. G. Brodova, E. V. Shorokhov, A. N. Petrova, I. G. Shirinkina, I. V. Minaev, I. N. Zhgilev, A. V. Abramov. Rev. Adv. Mater. Sci. 25, 128 (2010).
12. Y. Xu, J. Zhang, Y. Bai, M. A. Meyers. Metal.Mater.Trans. 39A, 811 (2008). Crossref
13. O. Johari, G. Thomas. Acta Metall. 12, 1153 (1964).
14. V. V. Rybin, N. Yu. Zolotorevsky, E. A. Ushanova, Technical Physics. 59 (12), 1819 (2014). Crossref
15. V. V. Rybin, N. Yu. Zolotorevsky, E. A. Ushanova. Physics of Metals and Metallography. 116 (7), 730 (2015). Crossref
16. I. J. Beyerlein, X. Zhang, A. Misra. Annu. Rev. Mater. Res. 44, 329 (2014). Crossref
17. M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. M. Wang, X. Cheng. Science. 300 (5623), 1275 (2003). Crossref
18. X. Z. Liao, F. Zhou, E. J. Lavernia, D. W. He, Y. T. Zhu. Appl. Phys. Lett. 83, 5062 (2003). Crossref
19. M. Yu. Gutkin, I. A. Ovid’ko and N. V. Skiba. Phys. Rev. B74, 172107 (2006). Crossref
20. R. C. Pond, L. M. F. Garcia-Garcia. Inst. Phys. Conf. Ser. 61, 495 (1981).
21. S. Hai, E. B. Tadmor. Acta Mater. 51, 117 (2003). Crossref
22. F. Zhao, L. Wang, D. Fan, B. X. Bie, X. M. Zhou, T. Suo, Y. L. Li, M. W. Chen, C. L. Liu, M. L. Qi, M. H. Zhu, S. N. Luo. Phys. Rev. Lett. 116, 075501 (2016). Crossref
23. F. Bachmann, R. Hielscher, H. Schaeben. Solid State Phenom. 160, 63 (2010). Crossref
24. P. Cizek, A. Whiteman, M. Rainforth. Journal of Microscopy. 213 (3), 285 (2004). Crossref
25. D. Jorge-Badiolga, A. Iza-Mendia, I. Gutierrez. Journal of Microscopy. 235 (1), 36 (2009).
26. N. Yu. Zolotorevsky, N. Yu. Ermakova, V. S. Sizova, E. A. Ushanova, V. V. Rybin. J. Mater. Sci. 52, 4172 (2017). Crossref
27. H. Alimadadi, A. Bastos, K. Pantleon. Proceeding of 33rd Risø International Symposium on Materials Science. 33, 175 (2012).
28. H. Miyamoto, A. Vinogradov, S. Hashimoto, R. Yoda. Mat. Trans. 50, 1924 (2009). Crossref

Cited by (1)

1.
D. K. Qi, M. X. Tang, L. Lu, F. Zhao, L. Wang, S. N. Luo. J Mater Sci. 54(5), 4314 (2019). Crossref

Similar papers