Estimation of anticorrosive properties of thin tapes of binary and ternary copper alloys

Y.V. Khlebnikova1, T.R. Suaridze1, D.P. Rodionov1, L.Y. Egorova1, R.I. Gulyaeva2
1Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620137, Yekaterinburg, Russia
2Institute of Metallurgy Ural Branch, RAS, ul. Amundsena, 101, 620160, Yekaterinburg, Russia


Oxidation tendency of a series of binary copper-based and ternary copper-nickel-based alloys with additions of 3d-transition metals such as Cr, V and Fe has been studied. Oxidation resistance is estimated by the use of thermogravimetry method at the temperature of 700°С, which corresponds to the typical temperature of deposition of buffer and superconducting layers on metal substrates. It has been found that the tapes of binary alloys Cu-0.4%Cr, Cu–1.6%Fe and Cu–0.6%V containing dispersed particles of a second phase with a crystal lattice different from that of the matrix have an oxidation resistance reduced inversely proportional to the particle size. A tape of Cu–0.6%V alloy, in which vanadium particles have sizes as large as few microns has been found to possess an even less oxidation resistance than the copper tape, so it cannot be used for epitaxial deposition of functional layers at high temperatures. Textured tapes of binary alloys Cu–0.4%Cr and Cu–1.6%Fe have better anticorrosion properties at the temperature of 700°С than tapes of pure copper but worse than those of ternary copper-nickel-based alloy tapes. It has been shown that textured tapes of ternary copper-nickel-based alloys containing 30 to 40% Ni and 1–2 wt. % Fe, Cr or V have a FCC solid solution structure without inclusions. Cu–40%Ni–1.2%Cr and Cu–40%Ni–1.4%Fe alloy tapes, in addition to perfect cubic texture and high strength properties, have significantly better anticorrosion properties at temperature 700°С than the tapes of pure copper and other alloys studied. Thus, they can be recommended for a use as substrates for epitaxial deposition of buffer and superconducting layers at high temperatures.

Received: 15 February 2017   Revised: 21 March 2017   Accepted: 28 March 2017

Views: 70   Downloads: 19


B. Gallistl, R. Kirchschlager, A. W. Hassel. Phys. Stat. Solidi A. 209 (5), 875 – 879 (2012). Doi:10.1002 / pssa.201100787.
C. V. Varanasi, P. N. Barnes, N. A. Yust. Supercond. Sci. Technol. 19, 85 – 95 (2006). Doi:10.1088 / 0953 – 2048 / 19 / 1 / 015.
Yu. V. Khlebnikova, D. P. Rodionov, L. Yu. Egorova, T. R. Suaridze. The Physics of Metals and Metallography. 117 (5), 500 – 507 (2016). DOI: 10.1134 / S0031918X16050094.
Yu. V. Khlebnikova, I. V. Gervas’eva, T. R. Suaridze, D. P. Rodionov, L. Yu. Egorova. Technical Physics Letters. 40 (10), 841 – 844 (2014). DOI: 10.1134 / S1063785014100083.
Yu. V. Khlebnikova, D. P. Rodionov, I. V. Grevas’eva, L. Yu. Egorova, T. R. Suaridze. Technical Physics. 60 (3), 389 – 399 (2015). DOI: 10.1134 / S1063784215030111.
Yu. V. Khlebnikova, D. P. Rodionov, I. V. Gervas’eva, T. R. Suaridze, Yu. N. Akshentsev, V. A. Kazantsev. The Physics of Metals and Metallography. 115 (12), 1231 – 1240 (2014). Doi: 10.1134 / S0031918X14120035.
H. Tian, H. L. Suo, O. V. Mishin, Y. B. Zhang, D. Juul Jensen, J.‑C. Grivel. J Mater. Sci. 48, 4183 – 4190 (2013). Doi: 10.1007 / s10853‑013‑7231‑y.
A. Girard, C. E. Bruzek, J. L. Jorda, L. Ortega, J. L. Soubeyrouxet. J. Phys.: Conf. Ser. 43, 341 – 343 (2006).
C. V. Varanasi, L. Brunke, J. Burke, I. Maartense, N. Padmaja, H. Efstathiadis, Chaney A., P. N. Barnes. Supercond. Sci. Technol. 19, 896 – 901 (2006). Doi: 10.1088 / 0953 – 2048 / 19 / 9 / 002.
J. L. Soubeyroux, C. E. Bruzek, A. Girard, J. L. Jorda. IEEE Trans. on applied superconductivity. 15 (2), 2687 – 2690 (2005). Doi: 10.1109 / TASC.2005.847783.
Yu. V. Khlebnikova, D. P. Rodionov, I. V. Grevas’eva, T. R. Suaridze, V. A. Kazantsev. Technical Physics Letters. 41 (4), 341 – 343 (2015). DOI: 10.1134 / S1063785015040094.
Y. V. Khlebnikova, I. V. Gervas’eva, T. R. Suaridze, D. P. Rodionov, L. Y. Egorova. Letters on materials. 6 (3), 205 – 210 (2016).
J. D. Budai, D. K. Christen, A. Goyal, Q. He, D. M. Kroeger, D. F. Lee, F. A. List, D. P. Norton, M. Paranthaman, B. C. Sales, E. D. Specht. US Patent № 5,968,877. (1999).
D. P. Norton, C. Park, A. Goyal. US Patent № 6,716,795. (2004).
O. E. Osintsev, V. N. Fedorov. Spravochnik. Copper and copper alloys. М., Mashinostroenie. (2004) Р. 203 – 266. (in Russian) [О. Е. Осинцев, В. Н. Федоров. Справочник. Медь и медные сплавы: отечественные и зарубежные марки. М., Машиностроение. 2004. С. 203 – 266].