Spectroscopic study of Co-doped CaCu3Ti4O12

N.A. Zhuk, E.U. Ipatova, B.A. Makeev ORCID logo , S.V. Nekipelov, A.V. Koroleva ORCID logo , L.A. Koksharova, R.I. Korolev show affiliations and emails
Received: 06 June 2021; Revised: 23 August 2021; Accepted: 05 September 2021
Citation: N.A. Zhuk, E.U. Ipatova, B.A. Makeev, S.V. Nekipelov, A.V. Koroleva, L.A. Koksharova, R.I. Korolev. Spectroscopic study of Co-doped CaCu3Ti4O12. Lett. Mater., 2021, 11(4) 386-391
BibTex   https://doi.org/10.22226/2410-3535-2021-4-386-391

Abstract

From the interpretation of the obtained XPS- and NEXAFS 2p-spectra of atoms in Co-doped CaCu3Ti4O12 and the corresponding oxides it was concluded that in ceramics the copper and calcium atoms have a charge state of +2, the titanium atoms have a slightly lower charge than +4, and cobalt atoms have mainly a charge of +2 with some fraction of Co(III) ions in the high spin state.Calcium-copper titanate has been thoroughly studied by scientists around the world for several decades due to the manifestation of colossal dielectric permeability values (ε ~104 –105) in wide frequency ranges (102 –106 Hz) and temperature ranges (100 – 600 K), showing neither ferroelectric nor relaxor properties. Due to the unique dielectric characteristics of calcium-copper titanate (CCTO), materials based on it are promising for the manufacture of multilayer capacitors and microwave devices. Restrictions on the practical use of CCTO are caused by high dielectric losses. Electrophysical characteristics are optimized by modifying the CCTO composition, partially replacing copper, titanium and calcium cations. Good dielectric properties are demonstrated by the CCTO ceramics doped with cobalt atoms. Co-doped CaCu3Ti4O12 was obtained by solid phase synthesis method. The samples are characterized by a grain microstructure; a thin layer of CuO is fixed in the intergranular space. From the interpretation of the obtained XPS- and NEXAFS 2p-spectra of Co-doped CaCu3Ti4O12 and the corresponding oxides it can be concluded that in the Co-doped ССТО atoms of copper and calcium have a charge state of +2, atoms of titanium — +(4 − δ), and cobalt atoms mainly +2 with some fraction of Co (III) in the high spin state. The Co-doped sample FTIR spectrum clearly captures the absorption bands in the fingerprint area at ≈408, 488, 539 cm−1, which are typical for ССТО.

References (38)

1. A. Deschanvres, B. Raveau, F. Tollemer. Bull. Soc. Chim. Fr. 15, 4077 (1967).
2. M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight. J. Sol. St. Chem. 151, 323 (2000). Crossref
3. J. Li, A. W. Sleight, M. A. Subramanian. Sol. St. Commun. 135, 260 (2005). Crossref
4. S. Krohns, P. Lunkenheimer, S. G. Ebbinghaus, A. Loidl. J. Appl. Phys. 103, 084107 (2008). Crossref
5. J. J. Mohamed, S. D. Hutagalung, M. F. Ain, K. Deraman, Z. A. Ahmad. Mater. Lett. 61, 1835 (2007). Crossref
6. L. Ni, X. M. Chen. Appl. Phys. Lett. 91, 122905 (2007). Crossref
7. L. Ni, X. M. Chen. J. Am. Ceram. Soc. 93, 184 (2010). Crossref
8. C. Wang, H. J. Zhang, P. M. He, G. H. Cao. Appl. Phys. Lett. 91, 052910 (2007). Crossref
9. G. Deng, N. Xanthopoulos, P. Muralt. Appl. Phys. Lett. 92, 172909 (2008). Crossref
10. N. A. Zhuk, S. V. Nekipelov, V. N. Sivkov, B. A. Makeev, R. I. Korolev, V. A. Belyy, M. G. Krzhizhanovskaya, M. M. Ignatova. Mater. Chem. Phys. 252, 123310 (2020). Crossref
11. N. A. Zhuk, S. V. Nekipelov, V. N. Sivkov, N. A. Sekushin, V. P. Lutoev, B. A. Makeev et al. Ceram. Intern. 46, 21410 (2020). Crossref
12. M. Ahmadipour, M. F. Ain, Z. A. Ahmad. Nano-Micro Letters. 8, 291 (2016). Crossref
13. F. Amaral, E. Clemente, M. A. Valente, L. C. Costa, F. M. Costa. Ceram. Intern. 40, 16503 (2014). Crossref
14. M. Li, Q. Liu, C. X. Li. J. Alloy Comp. 699, 278 (2017). Crossref
15. D. Xu, X. Yue, Y. Zhang, J. Song, X. Chen, S. Zhong, J. Ma, L. Ba, L. Zhang, S. Du. J. Alloys Comp. 773, 853 (2019). Crossref
16. X. Yue, W. Long, J. Liu, S. Pandey, S. Zhong, L. Zhang, et. al. J. Alloys Comp. 816, 152582 (2020). Crossref
17. J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen. J. Eur. Ceram. Soc. 38, 3505 (2018). Crossref
18. K. D. Mandal, A. K. Rai, L. Singh, O. Parkash. Bull. Mater. Sci. 35, 433 (2012). Crossref
19. S.-Y. Chung, S.-Y. Choi, T. Yamamoto, Y. Ikuhara, S.-J. L. Kang. Appl. Phys. Lett. 88, 091917 (2006). Crossref
20. C. Mu, Y. Song, H. Wang, X. Wang. J. Appl. Phys. 117, 17B723 (2015). Crossref
21. L. Fang, M. Shen, F. Zheng, Z. Li, J. Yang. J. Appl. Phys. 104, 064110 (2008). Crossref
22. S. Jesurani, S. Kanagesan, K. Ashok. J. Sol-Gel Sci. Techn. 64, 335 (2012). Crossref
23. L. G. Akselrud, Yu. N. Grin, P. Yu. Zavalii, V. K. Pecharski, V. S. Fundamentski. Twelfth European Crystallogr. Meeting, Collected Abstracts. Moscow (1989) p. 155.
24. J. Stohr. NEXAFS Spectroscopy. Springer. Berlin (1992). Crossref
25. R. D. Shannon. Acta Crystallogr. А. 32, 751 (1976). Crossref
26. N. A. Zhuk, S. M. Shugurov, V. A. Belyy, B. A. Makeev, M. V. Yermolina, D. S. Beznosikov, L. A. Koksharova. Ceram. Intern. 44, 20841 (2018). Crossref
27. T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Luning, J. Stöhr, R. L. White. Phys. Rev. B. 64, 214422 (2001). Crossref
28. S. Y. Istomin, O. A. Tyablikov, S. M. Kazakov, E. V. Antipov, A. I. Kurbakov, A. A. Tsirlin, N. Hollmann, Y. Y. Chin, H.-J. Lin, C. T. Chen, A. Tanaka, L. H. Tjeng, Z. Hu. Dalt Trans. 44, 10708 (2015). Crossref
29. M. Merz, D. Fuchs, A. Assmann, S. Uebe, H. V. Lohneysen, P. Nagel, S. Schuppler. Phys. Rev. B. 84, 014436 (2011). Crossref
30. S. O. Kucheyev, T. van Buuren, T. F. Baumann, J. H. Satcher, Jr. T. M. Willey, R. W. Meulenberg, T. E. Felter, J. F. Poco, S. A. Gammon, L. J. Terminello. Phys. Rev. B. 69, 245102 (2004). Crossref
31. M. Hassel, H.-J. Freund. Surface Science Spectra. 4, 273 (1996). Crossref
32. J. F. Moulder. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation (1992) 261 p.
33. S. Jesurani, S. Kanagesan, R. Velmurugan, T. Kalaivani. J. Mater. Sci.: Mater. Electron. 23, 668 (2011).
34. N. Hadi, A. Farid, T.-E. Lamcharfi, A. Belaaraj, S. Kassou, F. Ahjyaje. J. Chem. 8, 245 (2019).
35. L. C. Kretly, A. F. L. Almeida, P. B. A. Fechine, R. S. de Oliveira, A. S. B. Sombra. J. Mater. Sci. Mater. Electron. 15, 657 (2004). Crossref
36. C. Masingboon, S. Maensiri, T. Yamwong, P. L. Anderson, S. Seraphin. Appl. Phys. A. 91, 87 (2007). Crossref
37. A. F. L. Almeida, P. B. A. Fechine, M. P. F. Graça, M. A. Valente, A. S. B. Sombra. J. Mater. Sci.: Mater. Electron. 20, 163 (2008).
38. M. Premila, A. Bharathi, N. Gayathri, P. Yasodha, Y. Hariharan, C. S. Sundar. J. Phys. 67, 153 (2006).

Similar papers