Plastic and fracture behaviour of nanocrystalline binary Al alloys with grain boundary segregation

R. Babicheva, S. Dmitriev, V. Stolyarov, K. Zhou
Received: 11 September 2017; Revised: 02 November 2017; Accepted: 02 November 2017
Citation: R. Babicheva, S. Dmitriev, V. Stolyarov, K. Zhou. Plastic and fracture behaviour of nanocrystalline binary Al alloys with grain boundary segregation. Letters on Materials, 2017, 7(4) 428-432
BibTex   DOI: 10.22226/2410-3535-2017-4-428-432

Abstract

Grain boundary (GB) segregation of Co has the positive effect on both plasticity and strength of nanocrystalline (NC) Al, while Ti atoms in GBs improve only its ductility. Cracking of NC Al and its alloys with GB segregation of Fe or Mg occurs through the formation of nano-voids at GBs followed by their coalescence at higher stresses.The paper studies the stress-strain and fracture behaviour of nanocrystalline (NC) pure Al and NC binary Al-X alloys (X can be Fe, Co, Ti, Mg or Pb) with grain boundary (GB) segregation during their tensile deformation at room temperature via molecular dynamics simulation. The computational cell used for the modeling contains nano-sized grains of Al majority of which has the high-angle type GBs. The binary alloys were obtained through the substitution of Al atoms in GBs by atoms of the alloying elements. Stress-strain curves of the considered materials were calculated, and their microstructure evolution was analyzed. It was found that GB segregations can significantly alter the deformation behaviour of NC Al. The NC pure Al and two alloys, Al with Fe and Al with Mg, undergo the intergranular fracture which is noticeable already at ~ 8 % strain, while the other alloys do not demonstrate any failure process up to 40 % deformation. The main crack growth mechanism is the formation of nano-voids at GBs and triple junctions followed by their coalescence at higher applied stresses. The obtained results demonstrate that GB segregation of Co can have a positive effect on both plasticity and strength of NC Al, and Ti atoms in GBs can result in its improved ductility.

References (52)

1.
R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov. Progress in Materials Science 45 (2) (2000) 103 – 189.
2.
A. P. Zhilyaev, T. G. Langdon. Progress in Materials Science 53 (6) (2008) 893 – 979.
3.
R. Z. Valiev, T. G. Langdon. Progress in Materials Science 51 (7) (2006) 881 – 981.
4.
R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov. Materials Science and Engineering A168 (2) (1993) 141 – 148.
5.
I. Sabirov, M. Y. Murashkin, R. Z. Valiev. Materials Science and Engineering A560 (2013) 1 – 24.
6.
O. Sitdikov, E. Avtokratova, R. Babicheva, T. Sakai, K. Tsuzaki, Y. Watanabe. Materials Transactions 53 (01) (2012) 56 – 62.
7.
R. I. Babicheva, K. A. Bukreeva, S. V. Dmitriev, K. Zhou. Computational Materials Science 79 (2013) 52 – 55.
8.
R. I. Babicheva, K. A. Bukreeva, S. V. Dmitriev, R. R. Mulyukov, K. Zhou. Intermetallics 43 (2013) 171 – 176.
9.
P. Lin, R. I. Babicheva, M. Xue, H. Sh. Zhang, H. Xu, B. Liu, K. Zhou. Computational Materials Science 96 (2015) 295 – 299.
10.
K. A. Bukreeva, R. I. Babicheva, S. V. Dmitriev, K. Zhou, R. R. Mulyukov. Physics of the Solid State 55 (9) (2013) 1963 – 1967.
11.
K. A. Bukreeva, R. I. Babicheva, A. B. Sultanguzhina, S. V. Dmitriev, K. Zhou, R. R. Mulyukov. Physics of the Solid State 56 (6) (2014) 1157 – 1162.
12.
R. I. Babicheva, Kh. Ya. Mulyukov, I. Z. Sharipov, I. M. Safarov. Physics of the Solid State 54 (7) (2012) 1480 – 1485.
13.
R. I. Babicheva, Kh. Ya. Mulyukov. Applied Physics A Materials Science & Processing 116 (4) (2014) 1857 – 1865
14.
E. O. Hall. Proceedings of the Physical Society. Section B64 (1951) 747 – 753.
15.
N. J. Petch, Journal of the Iron and Steel Institute. 174 (1953) 25 – 28.
16.
M. F. Ashby, Philosophical Magazine 21 (1970), pp. 399 – 424.
17.
J. C. M. Li and Y. T. Chou, Met. Mat. Trans. 1 (1970), pp. 1145 – 1159.
18.
A. Sutton. Interfaces in crystalline materials. Oxford: Clarendon Press; New York: Oxford University Press (1995) xxxii, 819 p.
19.
A. N. Chokshi, A. Rosen, J. Karch, H. Gleiter. Scr. Metall. 23 (1989) 1679.
20.
D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.‑P. Choi. Current Opinion in Solid State and Materials Science 18 (2014) 253 – 261.
21.
R. Z. Valiev, N. A. Enikeev, M. Yu. Murashkin, V. U. Kazykhanov, X. Sauvage. Scripta Materialia 63 (9) (2010) 949 – 952.
22.
Y. Nasedkina, X. Sauvage, E. V. Bobruk, M. Y. Murashkin, R. Z. Valiev, N. A. Enikeev. J. Alloys and Compounds 710 (2017) 736.
23.
M. M. Abramova, N. A. Enikeev, R. Z. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko, X. Sauvage. Materials Letters 136 (2014) 349.
24.
X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin. Acta Materialia 72 (2014) 125.
25.
R. I. Babicheva, S. V. Dmitriev, Y. Zhang, S. W. Kok, N. Srikanth, B. Liu, K. Zhou. Computational Materials Science 98 (2015) 410 – 416.
26.
R. Babicheva, D. Bachurin, S. Dmitriev, Y. Zhang, S. W. Kok, L. Bai, K. Zhou. Philosophical Magazine 96 (15) (2016) 1598 – 1612.
27.
Y. J. Li, P. P. Choi, S. Goto, C. Borchers, D. Raabe, R. Kirchheim. Acta Materialia 60 (2012) 4005 – 4016.
28.
R. Babicheva, S. Dmitriev, L. Bai, Y. Zhang, S. W. Kok, G. Kang, K. Zhou. Computational Materials Science 117 (2016) 445 – 454.
29.
A. V. Zinovev, M. G. Bapanina, R. I. Babicheva, N. A. Enikeev, S. V. Dmitriev, K. Zhou. The Physics of Metals and Metallography 18 (1) (2017) 65 – 74.
30.
S. J. Dillon, M. Tang, W. C. Carter, M. P. Harmer. Acta Materialia 55 (2007) 6208 – 6218.
31.
Q. Gao, M. Widom. Current Opinion in Solid State and Materials Science 20 (5) (2016) 240 – 246.
32.
O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, et al. Acta Materialia 59 (2011) 364 – 374.
33.
D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, et al. Acta Materialia 61 (2013) 6132 – 6152.
34.
R. Babicheva, S. Dmitriev, D. Bachurin, N. Srikanth, Y. Zhang, S. W. Kok, K. Zhou. Int. J. Fatigue 102 (2017) 270 – 281.
35.
M. S. Daw, M. I. Baskes. Physical Review B29 (12) (1984) 6443 – 6453.
36.
M. I. Mendelev, M. J. Kramer, C. A. Becker, M. Asta. Philosophical Magazine 88 (12) (2008) 1723 – 1750.
37.
M. I. Mendelev, M. Asta, M. J. Rahman, J. J. Hoyt. Philosophical Magazine 89 (2009) 3269 – 3285.
38.
M. I. Mendelev, D. J. Srolovitz, G. J. Ackland, S. Han. Journal of Materials Research 20 (2005) 208 – 218.
39.
R. R. Zope, Y. Mishin. Physical Review B68 (2003) 024102.
40.
A. Landa, P. Wynblatt, D. J. Siegel, J. B. Adams, O. N. Mryasov, X.‑Y. Liu. Acta Materialia 48 (2000) 1753 – 1761.
41.
G. P. Purja Pun, V. Yamakov, Y. Mishin. Modelling and Simulation in Materials Science and Engineering 23 (2015) 065006.
42.
S. Plimpton. Journal of Computational Physics 117 (1995) 1 – 19.
43.
A. Stukowski. Modelling and Simulation in Materials Science and Engineering 18 (2010) 015012.
44.
X. Zhou, X. Li, C. Chen. Acta Materialia 99 (2015) 77 – 86.
45.
K. Nishimura, N. Miyazaki. Computational Materials Science 31 (2004) 269 – 278.
46.
M. F. Horstemeyer, D. Farkas, S. Kim, T. Tang, G. Potirniche. International Journal of Fatigue 32 (2010) 1473 – 1502.
47.
M. Legros, D. S. Gianola, K. J. Hemker. Acta Materialia 56 (2008) 3380 – 3393.
48.
F. Mompiou, D. Caillard, M. Legros. Acta Materialia 57 (2009) 2198 – 2209.
49.
I. A. Ovid’ko, A. G. Sheinerman, E. C. Aifantis. Acta Materialia 56 (2008) 2718 – 2727.
50.
Y. Horio, A. Inoue, T. Masumoto. Materials Science and Engineering A179–180 (1994) 596 – 599.
51.
R. I. Wu, G. Wilde, J. H. Perepezko. Materials Science and Engineering A301 (2001) 12–17.
52.
E. G. Soboleva, A. L. Igisheva, T. B. Krit. IOP Conference Series: Materials Science and Engineering 91 (2015) 012032.