On the prospects of using a phase transition in Ag nanoclusters for information recording processes

D.A. Bashkova ORCID logo , Y.Y. Gafner, S.L. Gafner show affiliations and emails
Received 20 April 2019; Accepted 05 June 2019;
Citation: D.A. Bashkova, Y.Y. Gafner, S.L. Gafner. On the prospects of using a phase transition in Ag nanoclusters for information recording processes. Lett. Mater., 2019, 9(4) 382-385
BibTex   https://doi.org/10.22226/2410-3535-2019-4-382-385


Today the global leaders of electronics production actively develop the technology of a non-volatile phase-change memory (PCM) based on a phase transition from a crystal to amorphous phase in nanoclusters. The main purpose of this work is a detailed study of possibility to use clusters of silver as a single bit of information in long-term memory devices, based on principle changing of phase memory of the carrier.To achieve a technological breakthrough in the creation of high-speed PCM cells, it is necessary to understand the nature of the switching effect of stable states and study the properties of the materials used for the working layer of a memory cell. The study of crystallization kinetics requires knowledge of the fundamental thermal properties of both crystal and amorphous states. If to consider all the chemical compounds tested for possible application in PCM memory, the metal nanoclusters of a relatively smaller size are of a special interest to analyze them for this task. The applicability of using individual nanoclusters of Ag as unites of storage of data bits in nonvolatile memory devices, the store capability of which is based on the principle of the phase change of the state of the carrier of information, has been estimated. Therefore, with the help of the molecular dynamics method on the basis of the TB-SMA potential, the simulation of melting-crystallization processes of Ag nanoparticles (D ≤10.0 nm) has been performed. The influence of various conditions of crystallization on the formation of the internal structure in Ag nanoclusters is investigated. The limiting size of Ag nanoparticles is determined, for which a structural “order-disorder” transition necessary for the data recording is still possible. It has been concluded that the best material for the memory cells, the store capability of which is based on the occurrence of phase transitions, is Ag nanoclusters with a diameter of D ≥ 8.0 nm.

References (19)

1. G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi. J. Vac. Sci. Technol. B. 28, 223 (2010). Crossref
2. G. B. Beneventi. Characterization and modeling of phase-change memories. Lambert Academic Publishing (2012) 109 р.
3. M. Suri, O. Bichler, D. Querlioz, B. Traoré, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, Ch. Gamrat, B. DeSalvo. J. Appl. Phys. 112, 054904 (2012). Crossref
4. F. Wang. Non-Volatile memory devices based on chalcogenide materials. In: Flash Memories (ed. by I. Stievano). InTech Publ (2011) p. 197 - 210. Crossref
5. Yu. I. Golovin. Introduction to Nanotechniques. Moscow, Mashinostroenie (2007) 496 р. (in Russian) [Ю.И.Головин. Введение в нанотехнику. Москва, Машиностроание (2007) 496 с.].
6. Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, et al. 2006 International Electron Devices Meeting. San Francisco, CA (2006) p. 777. Crossref
7. Z. Xu, B. Liu, Y. F. Chen, Z. H. Zhang, D. Gao. Solid-State Electronics. 116, 119 (2016). Crossref
8. D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, M. Wuttig. Appl. Phys. Lett. 95, 082101 (2009). Crossref
9. D. Krebs, S. Raoux, C. T. Rettner, Y. C. Chen, G. W. Burr, M. Wuttig. Proceedings of the Materials Research Society. 1072, G06 (2008). Crossref
10. J. E. Brewer, M. Gill. Nonvolatile memory technologies with emphasis on Flash. A comprehensive guide to understanding and using NVM devices. New Jersey, A John Wiley & Sons Inc. (2008) 759 p. Crossref
11. M. Salinga. Phase change materials for non-volatile electronic memories: Ph.D. thesis. RWTH-Aachen (2008) 224 р.
12. Yu. Ya. Gafner, S. L. Gafner, L. V. Redel, Zh. V. Goloven’ko. Journal of Nanoscience and Nanotechnology. 14, 5138 (2014). Crossref
13. L. V. Redel, Yu. Ya. Gafner, S. L. Gafner, I. S. Zamulin, Zh. V. Goloven’ko. Physics of Metals and Metallography. 118, 452 (2017). Crossref
14. L. V. Redel, S. L. Gafner, Yu. Ya. Gafner, I. S. Zamulin, Zh. V. Goloven’ko. Physics of the Solid State. 59, 413 (2017). Crossref
15. F. Cleri, V. Rosato. Phys. Rev. B. 48, 22 (1993). Crossref
16. H. C. Andersеn. J. Phys. Chem. 72, 2384 (1980). Crossref
17. T. Pang. An introduction to computational physics. University Press, Cambridge (2006) 385 р. Crossref
18. L. V. Redel, Yu. Ya. Gafner, S. L. Gafner. Physics of the Solid State. 57, 2117 (2015). Crossref
19. S. L. Gafner, D. A. Bashkova, Yu. Ya. Gafner. IOP Conf. Series: Materials Science and Engineering. 447, 012056 (2018). Crossref

Similar papers


1. Russian Foundation for Basic Research - project no. 18‑42‑190001 and 19‑48‑190002