Molecular dynamics study of the influence of free volume and orientation of the crystallization front on its velocity in nickel

G.M. Poletaev ORCID logo , I.V. Karakulova, D.V. Novoselova, R.Y. Rakitin show affiliations and emails
Received 13 March 2022; Accepted 08 April 2022;
Citation: G.M. Poletaev, I.V. Karakulova, D.V. Novoselova, R.Y. Rakitin. Molecular dynamics study of the influence of free volume and orientation of the crystallization front on its velocity in nickel. Lett. Mater., 2022, 12(2) 111-115
BibTex   https://doi.org/10.22226/2410-3535-2022-2-111-115

Abstract

The influence of free volume and orientation of the crystallization front relative to the growing crystal on the front movement velocity in nickel was studied by the method of molecular dynamicsThe influence of free volume and orientation of the crystallization front relative to the growing crystal on the velocity of the front movement in nickel was studied by the method of molecular dynamics. The computational cells had the shape of elongated parallelepipeds, at the ends of which the crystal structure was fixed, that imitated the starting position of the heterogeneous crystallization front. Three different orientations of the front relative to the growing crystal were considered: (100), (110), and (111). The concentration of the excess free volume and the formation of vacancy clusters occurred mainly in last turn, at the final stage of crystallization. The introduction of excess free volume led to a decrease in the crystallization velocity. At high concentrations of several percent, the formation of some clusters occurred already at the early stages of crystal growth, but most of them, nevertheless, were located at the meeting point of two fronts from different ends of the computational cell. Crystallization proceeded faster at the (100) front orientation, slower at the (110) and (111) orientations. The anisotropy of the crystallization velocity is related to the difference between the free energies of an atom near the boundary in the liquid phase and a growing crystal «imbedded» into the boundary, which depends on the orientation of the boundary and, in particular, correlates with the energy of the adatom on the corresponding free surface of the crystal.

References (22)

1. P. K. Galenko, V. Ankudinov, K. Reuther, M. Rettenmayr, A. Salhoumi, E. V. Kharanzhevskiy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 377, 20180205 (2019). Crossref
2. S. K. Jha, S. Karthika, T. K. Radhakrishnan. Resource-Efficient Technologies. 3, 94 (2017). Crossref
3. V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, O. N. Koroleva, A. V. Mazhukin. Mathematical Models and Computer Simulations. 9, 448 (2017). Crossref
4. M. I. Mendelev, F. Zhang, H. Song, Y. Sun, C. Z. Wang, K. M. Ho. The Journal of Chemical Physics. 148, 214705 (2018). Crossref
5. G. Sun, J. Xu, P. Harrowell. Nature Materials. 17, 881 (2018). Crossref
6. W.-L. Chan, R. S. Averback, D. G. Cahill, Y. Ashkenazy. Physical Review Letters. 102, 095701 (2009). Crossref
7. H. Y. Zhang, F. Liu, Y. Yang, D. Y. Sun. Scientific Reports. 7, 10241 (2017). Crossref
8. D. Turnbull, R. E. Cech. Journal of Applied Physics. 21, 804 (1950). Crossref
9. K. K. Leung, C. P. Chiu, H. W. Kui. Scripta Metallurgica et Materialia. 32, 1559 (1995). Crossref
10. C. A. MacDonald, A. M. Malvezzi, F. Spaepen. Journal of Applied Physics. 65, 129 (1989). Crossref
11. S. R. Coriell, D. Turnbull. Acta Metallurgica. 30, 2135 (1982). Crossref
12. J. Q. Broughton, G. H. Gilmer, K. A. Jackson. Physical Review Letters. 49, 1496 (1982). Crossref
13. M. I. Mendelev, M. J. Rahman, J. J. Hoyt, M. Asta. Modelling and Simulation in Materials Science and Engineering. 18, 074002 (2010). Crossref
14. J. J. Hoyt, M. Asta, A. Karma. Interface Science. 10, 181 (2002). Crossref
15. D. Y. Sun, M. Asta, J. J. Hoyt. Physical Review B. 69, 024108 (2004). Crossref
16. G. M. Poletaev, D. V. Novoselova, I. V. Zorya, M. D. Starostenkov. Physics of the Solid State. 60, 847 (2018). Crossref
17. G. M. Poletaev, D. V. Novoselova, R. Y. Rakitin, A. S. Semenov. Letters on Materials. 10 (3), 299 (2020). Crossref
18. F. Cleri, V. Rosato. Physical Review B. 48, 22 (1993). Crossref
19. C. Chen, F. Zhang, H. Xu, Z. Yang, G. M. Poletaev. Journal of Materials Science. 57, 1833 (2022). Crossref
20. G. M. Poletaev, I. V. Zorya, R. Y. Rakitin, M. A. Iliina. Materials Physics and Mechanics. 42, 380 (2019). Crossref
21. R. Y. Rakitin, G. M. Poletaev, M. S. Aksenov, M. D. Starostenkov. Technical Physics Letters. 31, 650 (2005). Crossref
22. C. L. Liu, J. M. Cohen, J. B. Adams, A. F. Voter. Surface Science. 253, 334 (1991). Crossref

Similar papers