Modeling the crystallographic texture of of ferritic/martensitic steel during rolling: the level and anisotropy of strength properties

V.D. Sitdikov, G.F. Sitdikova, E.D. Khafizova, R.K. Islamgaliev show affiliations and emails
Received 30 September 2021; Accepted 11 November 2021;
This paper is written in Russian
Citation: V.D. Sitdikov, G.F. Sitdikova, E.D. Khafizova, R.K. Islamgaliev. Modeling the crystallographic texture of of ferritic/martensitic steel during rolling: the level and anisotropy of strength properties. Lett. Mater., 2021, 11(4) 497-502
BibTex   https://doi.org/10.22226/2410-3535-2021-4-497-502

Abstract

Values of Lankford coefficients for various thickness reduction at rolling UFG  steel.This paper presents the results of studies of the level and anisotropy of strength properties in ferritic / martensitic steel during warm rolling based on the data on crystallographic texture. The features of texture formation processes in the initial and UFG samples subjected to flat rolling are analyzed by the method of texture analysis and computer modeling. In particular, the analysis of the orientation distribution function (ODF) made it possible to establish the change in the main preferential orientations (Brass, Goss, Copper, Cube, TC, Y, Z and Rotated Cube) depending on the degree of reduction. It is shown that in flat rolling, a stable rolling texture is formed only after 70 % reduction, at which H {001}<011>, Goss {001}<110>, Cube {100}<001> and TC {255}<511> orientations become the main ones. At high degrees of flat rolling, the sharpness of the above textural maxima increases, which is accompanied by the activation of a smaller number of slip systems, and the misorientations between adjacent grains become predominantly high-angle ones. Within the framework of modeling of crystallographic textures, deformation mechanisms were established, two-dimensional projections of yield contours, Young's module and Lankford coefficients (r-value) were constructed. In particular, the results of computer simulation of the yield contours of steel after tempering the coarse-crystalline and UFG states showed that at low degrees of flat rolling reduction, an increased level of anisotropy of strength properties is associated with the residual crystallographic texture in the workpiece, and an increase in the degree of flat rolling leads to alignment of the strength anisotropy in sheets. It was found that the quantitative ratio of the main textural components of the type H {001}<011>, Goss {001}<110>, Cube {100}<001> and TC {255}<511> during rolling determine the anisotropy of the strength properties of steel.

References (18)

1. M. I. Goldstein, S. V. Grachev, Yu. G. Veksler. Special steels. Moscow, Metallurgiya (1985) 408 p. (in Russian) [М. И. Гольдштейн, С. В. Грачев, Ю. Г. Векслер. Специальные стали. Москва, Металлургия (1985) 408 с.].
2. C. X. Huang, Y. L. Gao, G. Yang, S. D. Wu, G. Y. Li, S. F. Zhang. J. Mater. Res. 21, 1687 (2006). Crossref
3. I. I. Kositsyna, V. V. Sagaradze, V. I. Kopylov. The Physics of Metals and Metallography. 88 (5), 84 (1999).
4. M. V. Karavaeva, M. M. Abramova, N. A. Enikeev, G. I. Raab, R. Z. Valiev. Metals. 6 (12), 310 (2016). Crossref
5. F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati, R. Surkialiabad. Materials Science and Engineering A. 527, 7334 (2010). Crossref
6. K. N. Ramazanov, R. S. Esipov, E. L. Vardanyan, R. D. Agzamov. Journal of Physics: Conference Series. 830 (1), 012074 (2017).
7. M. Okayasu, K. Sato, M. Mizuno, D. Y. Hwang, D. H. Shin. International Journal of Fatigue. 30, 1358 (2008). Crossref
8. E. G. Astafurova, G. G. Zakharova, E. V. Naydenkin et al. Letters on materials. 1 (4), 198 (2011). (in Russian) [Е. Г. Астафурова, Г. Г. Захарова, Е. В. Найденкин и др. Письма о материалах. 1 (4), 198 (2011).]. Crossref
9. S. N. Sergeev, I. M. Safarov, A. V. Korznikov, R. M. Galeev, S. V. Gladkovsky, D. A. Dvoinikov. Letters on materials. 5 (1), 48 (2015). [С. Н. Сергеев, И. М. Сафаров, А. В. Корзников, Р. М. Галеев, С. В. Гладковский, Д. А. Двойников. Письма о материалах. 5 (1), 48 (2015).]. Crossref
10. U. F. Kocks, C. N. Tome, H. R. Wenk. Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge, Cambridge University Press (1998) 676 p.
11. LaboSoft Website (www.labosoft.com.pl).
12. R. K. Islamgaliev, M. A. Nikitina, A. V. Ganeev, V. D. Sitdikov. Materials Science and Engineering A. 744, 163 (2019). Crossref
13. D. Raabe, K. Lucke. Materials Science and Technology. 9, 302 (1993). Crossref
14. D. Raabe. Steel research International. 74, 327 (2003). Crossref
15. L. S. Toth, A. Molinari, D. Raabe. Metall. Mater. Trans. A. 28, 2343 (1997). Crossref
16. I. Gutierrez-Urrutia, D. Raabe. Mater. Sci. Forum. 702 - 703, 523 (2012). Crossref
17. M. Imran, F. Walther. Metal Forming (Cold): Dislocation Mechanisms and Microstructural Changes. Reference Module in Mater. Sci. Eng. Elsevier (2016). Crossref
18. M. Holscher, D. Raabe, K. Lucke. Steel Research International. 62, 567 (1991). Crossref

Similar papers

Funding

1. Russian Science Foundation - №19-19-00496