Heat treatment effect on fatigue strength and frequency stability of maraging steel

V.V. Mylnikov ORCID logo , E.A. Dmitriev show affiliations and emails
Received 14 April 2023; Accepted 04 June 2023;
Citation: V.V. Mylnikov, E.A. Dmitriev. Heat treatment effect on fatigue strength and frequency stability of maraging steel. Lett. Mater., 2023, 13(3) 266-271
BibTex   https://doi.org/10.22226/2410-3535-2023-3-266-271

Abstract

The effects of the heat treatment regime on the fatigue strength and frequency stability of samples made of martensitic-aging steel 03Ni18CoMo5Ti-EBR were investigated. The tests were carried out on an original electromagnetic installation operating in self-oscillating mode during cyclic tests using a "soft" cantilever bending scheme of flat samples.Specimens of maraging steels have been studied for fatigue upon completion of various types of heat treatment .The frequency-response curves are given and the dynamics of the frequency stability of the specimens during testing under loads close to the fatigue limit is revealed.

References (19)

1. I. V. Gadolina, N. A. Makhutov, A. V. Erpalov. Int. J. Fatigue. 144, 106035 (2021). Crossref
2. S. Suresh. Fatigue of metals. Cambridge University Press (2006) 701 р.
3. V. E. Gromov, Yu. F. Ivanov, S. V. Vorobiev, S. V. Konovalov. Fatigue of steels modified by high intensity electron beams. Cambridge (2015) 272 р.
4. H. Mughrabi, H.-J. Christ. ISIJ International. 37 (12), 1154 (1997). Crossref
5. A. G. Kolmakov, V. F. Terent’ev, D. V. Prosvirnin, V. M. Chernov, M. V. Leont’eva-Smirnova. Russian Metallurgy (Metally). 4, 394 (2016). Crossref
6. V. V. Myl’nikov, O. B. Kondrashkin, D. I. Shetulov, E. A. Chernyshov, A. I. Pronin. Steel in Translation. 49 (10), 678 (2019). Crossref
7. V. T. Troshchenko, L. A. Khamaza, V. V. Pokrovsky. Cyclic Deformation and Fatigue of Metals (ed. by M. Bily). Amsterdam, Elsevier (1993) 500 p.
8. L. Zoghaib, P.-O. Mattei. Journal of Vibration and Control. 21 (11), 2083 (2015). Crossref
9. L. Gagnon, M. Morandini, G. L. Ghiringhelli. Arch. Appl. Mech. 90, 107 (2020). Crossref
10. J. H. Griffin, C.-H. ASME J. Vib. Acoust. 113 (2), 225 (1991).
11. V. T. Troshchenko. Strength of Materials. 37 (4), 337 (2005). https://doi.org/. Crossref
12. V. T. Troshchenko, L. A. Khamaza. Strength of Materials. 44 (5), 46 (2012). Crossref
13. D. McClaflin and A. Fatemi. Int. J. Fatigue. 26 (7), 773 (2004). Crossref
14. B. K. Kardashev, K. V. Sapozhnikov, V. I. Betekhtin, A. G. Kadomtsev, M. V. Narykova. Physics of the Solid State. 59 (12), 2381 (2017). Crossref
15. B. K. Kardashev, K. V. Sapozhnikov. Physics of the Solid State. 64 (1), 11 (2022). Crossref
16. S. Kustov, J. Rosselló, M. L. Corró, V. Kaminskii, K. Sapozhnikov, A. Saren, A. Sozinov, K. Ullakko. Materials. 12 (3), 376 (2019). Crossref
17. M. S. Blanter, I. S. Golovin, H. Neuhäuser, H. R. Sinning. Internal friction in metallic materials. Springer Series in Materials Science. 90 (2007) 535 р.
18. O. N. Romaniv, L. P. Laz'ko, A. S. Krys'kiv. Mater Sci. 19, 522 (1984). Crossref
19. V. V. Mylnikov, D. I. Shetulov, E. A. Chernyshov. Russ. J. Non-Ferr. Met. 54 (3), 229 (2013). Crossref

Similar papers