Mathematical modeling of the manufacturing process of axisymmetric aircraft parts by the local deformation method

R.U. Sukhorukov, A.A. Sidorov, A.R. Ibragimov, F.Z. Utyashev show affiliations and emails
Accepted  09 June 2015
This paper is written in Russian
Citation: R.U. Sukhorukov, A.A. Sidorov, A.R. Ibragimov, F.Z. Utyashev. Mathematical modeling of the manufacturing process of axisymmetric aircraft parts by the local deformation method. Lett. Mater., 2015, 5(2) 175-178
BibTex   https://doi.org/10.22226/2410-3535-2015-2-175-178

Abstract

Parts like shafts and their combinations with discs are very significant elements of the modern aviation gas turbine engines and cognate ground energy propulsions. These parts are usually working in the extremely high loading and temperature conditions and therefore are produced from the highly heat-resistant alloys on the base of Ni, Fe and Ti. The production of these parts with the traditional hot metal forming leads the need of using powerful and energy-consuming equipment. One of the most prospective ways of reducing the load-energy consumption, reducing of the technological operations quantities, increasing of the material efficiency in producing of the axisymmetric aircraft parts is isothermal rolling under the superplastic deformation (SPD) condition using the specialized rolling machines. For the design of this type of machines it is necessary to estimate the load stroke parameters of the process, which the machine has to provide. The effective method of the estimation of the required load stroke parameters is computer simulation of the rolling process. In this paper, the technique to create a finite element model of the process of SPD during isothermal rolling with a high degree of plastic deformation localization is presented and exemplified by the production of disc made of heat-resistant VT9 titanium alloy, in respect to the mechanical properties of the ultra fine grain material microstructure. It is also presented the results of the rolling processes load-stroke, received in the commercial FEM code DEFORM 3D, and the load-stroke data received from the experiment.

References (8)

1. F. Z. Utyashev, I. A. Burlakov, V. A. Geikin, V. V. Morozov, R. R. Mulyukov, A. A. Nazarov, R. Y. Sukhorukov. J.of Machinery Manufacture and Reliability. 42 (5), 419-426 (2013).
2. F. Z. Utyashev, R. Y. Sukhorukov, A. A. Nazarov, A. I. Potekaev. Russian Physics Journal. 1-9 (2015).
3. S. I. Oh, T. Altan. Metal forming and the finite-element method. Oxford university press. (1989) 230p.
4. A. A. Shitikov. KShP OMD. 2, 34-40 (2014) (in Russian). [А. А. Шитиков КШП ОМД. 2, 34-40 (2014).].
5. N. V. Lopatin, E. A. Kudriavtsev, G. A. Solischev. Engineering systems 191-196 (2013). (In Russian). [Н. В. Лопатин, Е. А. Кудрявцев, Г. А. Салищев. Инженерные системы. 191-196 (2013).].
6. M. A. M. Hossain, K. Y. Park, S. T. Hong. Superplastic Behavior of Al5083 Alloy during Microforming Process. (2010).
7. X. Song. The International Journal of Advanced Manufacturing Technology. 71 (1-4), 207-217 (2014).
8. O. A. Kaibyshev, F. Z. Utyashev. Superplasticity, Structure Refining, and Processing of Hard-to-deform Alloys. M. Nauka. (2002) 438 p. (in Russian) [О. А. Кайбышев, Ф. З. Утяшев. Сверхпластичность, измельчение структуры и обработка труднодеформируемых сплавов. М. Наука. (2002) 438 с.].

Cited by (2)

1.
A. I. Alimov, S. A. Evsyukov, R. Yu. Sukhorukov. J. Mach. Manuf. Reliab. 48(4), 340 (2019). Crossref
2.
D. M. Zabelyan, I. A. Burlakov, D. E. Gordin, G. A. Mangasaryan, Yu. A. Gladkov. J. Mach. Manuf. Reliab. 49(1), 64 (2020). Crossref

Similar papers