Evaluation of deformations of thin-walled pipes during cold bending with rolling

A.V. Kozlov, E.V. Khaliulin, S.I. Platov, M.V. Nalimova, V.A. Nekit show affiliations and emails
Received 11 January 2019; Accepted 11 April 2019;
This paper is written in Russian
Citation: A.V. Kozlov, E.V. Khaliulin, S.I. Platov, M.V. Nalimova, V.A. Nekit. Evaluation of deformations of thin-walled pipes during cold bending with rolling. Lett. Mater., 2019, 9(2) 218-222
BibTex   https://doi.org/10.22226/2410-3535-2019-2-218-222

Abstract

An experimental study by the “method of grids” of the deformations’ degree and nature in the longitudinal and transverse sections of the pipe walls with their bending and rolling for different diameters and materials was carried out. The obtained results allow to calculate these deformations, to estimate the nature of the distribution of residual stresses and to predict the magnitude of the pipe walls’ thinning and the overall service life.The results of experimental evaluation of deformations of thin-walled pipes during their cold bending with rolling are discussed in this paper. The review of application of curvilinear elements of pipelines is considered. The methodology of the experiment is presented. Special equipment for cold bending pipes with rolling was used for experiments. The grid method was used as the basis for the strain estimation method. The measurements were carried out with an electronic caliper and a microscope of the MIM-340 model with an accuracy of 0.01 mm. The evaluation of deformations for various materials and pipe diameters is given in detail: steel Сk10, steel X10CrNiTi18–9 and brass 2.0280. The values of elongation and reduction of the length of the walls of the pipe involved in the beating were determined. For a general assessment of the deformations and residual stresses, summary comparative graphs of changes in the geometric shapes of pipe samples after bending with rolling were constructed by the method of studying the absolute elongations of pipe walls during bending with rolling. It is established that the degree of deformation of pipes obeys a certain regularity. Of a particular interest is the bending of pipes made of corrosion-resistant steel. In this regard, similar experiments were carried out on bending of the pipes from corrosion-resistant steel X10CrNiTi18–9. The thickness of the pipe walls and its length are calculated for three different variants of the pipe material, and their average range is given. As a result of the studies, dependencies were obtained that can be used to determine the nature of elongation and reduce the length of the pipe walls at various places of curved pipes, to determine the degree and nature of deformation in the longitudinal and cross sections of the pipe walls during bending with rolling and, as a result, to calculate these deformations and thinning of the pipe walls, which is an important operational characteristic.

References (22)

1. Yu. V. Gorokhov, V. G. Sherkunov, N. N. Dovzhenko, S. V. Belyaev, I. N. Dovzhenko. Osnovy proyektirovaniya protsessov nepreryvnogo pressovaniya metallov. Monograph. Krasnoyarsk, Institute of non-ferrous metals and materials science, Siberian Federal University (2013) 224 p. (in Russian) [Ю. В. Горохов, В. Г. Шеркунов, Н. Н. Довженко, С. В. Беляев, И. Н. Довженко. Основы проектирования процессов непрерывного прессования металлов. Монография. Красноярск, Институт цветных металлов и материаловедения, Сибирский федеральный университет (2013) 224 с.].
2. M. Yu. Semashko, V. G. Sherkunov, P. A. Chigintsev. Vestnik of Nosov Magnitogorsk State Technical University. 1 (41), 57 (2013). (in Russian) [М. Ю. Семашко, В. Г. Шеркунов, П. А. Чигинцев. Вестник Магнитогорского государственного технического университета им. Г. И. Носова. 1 (41), 57 (2013).].
3. N. A. Fomenko, S. V. Aleksikov, S. G. Artyomova. International Conference on Industrial Engineering, ICIE 2016. Procedia Engineering. Chelyabinsk (2016) p. 1359. Crossref
4. S. O. Gaponenko, A. E. Kondratiev, A. R. Zagretdinov. International Conference on Industrial Engineering, ICIE 2016. Procedia Engineering. Chelyabinsk (2016) p. 2321. Crossref
5. M. Herrmann, M. Fiderer, J. Walters. Papers of the International Conference “New Developments in Forging Technology” in Fellbach (near Stuttgart). MAT-INFO Werkstoff-Informationsgesellschaft. Frankfurt / M. (2005) 68.
6. N. V. Sudakov, V. I. Truskovsky, V. G. Sherkunov. Izvestiya Tula State University. Technical sciences. 6 (2), 98 (2013). (in Russian) [Н. В. Судаков, В. И. Трусковский, В. Г. Шеркунов. Известия Тульского государственного университета. Технические науки. 6 (2), 98 (2013).].
7. B. A. Lopatin, T. R. Khaziev. International Conference on Industrial Engineering, ICIE 2015. Procedia Engineering. Chelyabinsk (2015) p. 563. Crossref
8. L. V. Plotnikov, B. P. Zhilkin, Yu. M. Brodov. International Conference on Industrial Engineering, ICIE 2016. Procedia Engineering. Chelyabinsk (2016) p. 111. Crossref
9. V. V. Shirokov, A. V. Vydrin. Stal’. 1, 30 (2016). (in Russian) [В. В. Широков, А. В. Выдрин. Сталь. 1, 30 (2016).].
10. Patent RF. № 818707/B. I. 13 (1981). (in Russian) [Патент РФ. № 818707/Б. И. 13 (1981).].
11. A. V. Kozlov, V. G. Sherkunov, Ya. M. Kyilcevic. Russian Engineering Reseach. 29 (8), 809 (2009). Crossref
12. Patent RF № 157963/B. I. 35 (2015). (in Russian) [Патент РФ. № 157963. У/Б. И. 35 (2015).].
13. N. M. Belyaev. Strength of materials. Moscow, Nauka (1976) 608 p. (in Russian) [Н. М. Беляев. Сопротивление материалов. Москва, Наука (1976) 608 с.].
14. A. I. Halperin. Pipe bending machines and equipment. Moscow, Engineering (1983) 203 p. (in Russian) [А. И. Гальперин. Машины и оборудование для гибки труб. Москва, Машиностроение (1983) 203 с.].
15. A. V. Kozlov, A. V. Bobylev. Tekhnologiya i oborudovaniye kholodnoy gibki tonkostennykh trub. Monograph. Chelyabinsk, Publishing house of SUSU (2007) 169 p. (in Russian) [А. В. Козлов, А. В. Бобылев. Технология и оборудование холодной гибки тонкостенных труб. монография. Челябинск. Изд-во ЮУрГУ (2007) 169 с.].
16. E. V. Khaliulin, A. V. Kozlov. Bulletin of the South Ural State University. Series «Engineering». 18 (3), 58 (2018) . (in Russian) [Е. В. Халиулин, А. В. Козлов. Вестник ЮУрГУ. Серия «Машиностроение». 18 (3), 58 (2018).]. Crossref
17. U. S. Johnson, P. B. Mellor. Plasticity Theory for Engineers. Moscow, Engineering (1979) 567 p. (in Russian) [У. С. Джонсон, П. Б. Меллор Теория пластичности для инженеров. Москва, Машиностроение (1979) 567 с.].
18. A. V. Vydrin, E. V. Khramkov, M. V. Bunyashin. Stahl und Eisen. 3, 47 (2017). (in Russian) [А. В. Выдрин, Е. В. Храмков, М. В. Буняшин. Черные металлы. 3, 47 (2017).
19. S. P. Minatsevich, A. A. Sharonov, S. S. Borisov. International Conference on Industrial Engineering, ICIE 2015. Procedia Engineering. Chelyabinsk (2015) p.266. Crossref
20. E. V. Moskvicheva, P. A. Sidyakin, D. V. Shitov. International Conference on Industrial Engineering, ICIE 2016. Procedia Engineering. Chelyabinsk (2016) p. 2381. Crossref
21. A. V. Kozlov, I. V. Chumanov, A. V. Bobylev. Izvestiya vuzov. Chernaya metallurgiya. 6, 33 (1999). (in Russian) [А. В. Козлов, И. В. Чуманов, А. В. Бобылев. Известия вузов. Черная металлургия. 6, 33 (1999).].
22. A. V. Kozlov, V. G. Sherkunov. Vestnik of Nosov Magnitogorsk State Technical University. 3, 32 (2009). (in Russian) [А. В. Козлов, В. Г. Шеркунов. Вестник МГТУ им. Носова. 3, 32 (2009).].

Similar papers