Evaluation of energy parameters of fracture during drop weight tear tests based on the analysis of the geometry of the specimens

D.E. Kaputkin ORCID logo , L.M. Kaputkina, A.I. Abakumov, T.S. Esiev show affiliations and emails
Received 17 April 2020; Accepted 03 June 2020;
Citation: D.E. Kaputkin, L.M. Kaputkina, A.I. Abakumov, T.S. Esiev. Evaluation of energy parameters of fracture during drop weight tear tests based on the analysis of the geometry of the specimens. Lett. Mater., 2020, 10(3) 340-344
BibTex   https://doi.org/10.22226/2410-3535-2020-3-340-344

Abstract

The summary energy expenditures for deformation of specimens of pipe steel of strength class X80 were determined basing on experimentally measured geometry of the 3D images of fractured specimens.An instrumented drop weight tear test allows one to obtain the work of fracture of the specimen. This work monotonously but nonlinearly increases with increasing the test temperature, that is, with increasing toughness of the specimen material. However, part of the work is spent on processes that are not directly related to the properties of the material (friction, etc.). In this work, the total energy expenditures for the deformation of specimens of pipe steel of strength class X80 were determined basing on experimentally measured geometry of the 3D images of specimens and tensile curves of the studied steel, adjusted for the strain rate. In the upper half of the specimen, where tensile deformation was preceded by compression, the total plastic deformation was calculated as the sum of compression and tension. The energy of elastic deformation in all cases was 1÷ 5 % of the total energy of deformation (AD). An increase in the test temperature results to monotonous but nonlinear increases of AD from 7.5 kJ at −67°С (brittle fracture) to 15 kJ at −40°С (mixed fracture) and up to 17 kJ at +20°С (ductile fracture). Thus, AD is highly sensitive to the transition from brittle to mixed fracture and slowly sensitive to the transition from mixed to ductile fracture. The ratio of AD and the fracture work of the specimen is about 100 % for brittle fracture, >70 % for mixed fracture, and <70 % for ductile fracture. Thus, this ratio can be used as an indicator of the fracture type.

References (18)

1. GOST 30456-97. Metal products. Sheet metal and steel pipes. Impact bending test methods (1997). (in Russian) [ГОСТ 30456-97. Металлопродукция. Прокат листовой и трубы стальные. Методы испытания на ударный изгиб (1997).].
2. ASTM E436. Standard test method for Drop-Weight Tear Tests of Ferritic Steels (2014).
3. API 5L3-96 (2003). Recommended Practice for Conducting Drop-Weight Tear Tests on Line Pipe. Second Edition (2003).
4. BS EN 10274:1999. Metallic Materials Drop Weight Tear Tests (1999).
5. V. S. Vakhrusheva, E. A. Grimalovskaya. Metaloznavstvo ta Termichna obrobka metaliv. 3, 11 (2015). (in Russian) [В.С. Вахрушева, Е.А. Грималовская. Металознавство та термiчна обробка металiв. 3, 11 (2015).].
6. Yu. I. Pashkov, Yu. V. Bezgans. Vestnik YuUrGU. Ser. “Metallurgya”. 15 (1), 113 (2015). (in Russian) [Ю.И. Пашков, Ю.В. Безганс. Вестник ЮУрГУ. Сер. «Металлургия». 15 (1), 113 (2015).].
7. G. M. McClure, A. R. Duffy, R. J. Eiber. Trans. ASME. B. 87 (3), 265 (1965). Crossref
8. R.J. Eiber, A.R. Duffy, G.M. McClure. Significance of the Drop-Weight Tear Test and Charpy V-Notch Impact Test Results. In: Impact Testing of Metals. ASTM Special Technical Publication, Philadelphia, ASTM (1970) pp. 181-191. Crossref
9. Certificate of authorship SU 714223 A1, 05.02.1980. (in Russian) [Авт. свид. СССР SU 714223 A1, 05.02.1980.].
10. I. V. Ushakov, V. A. Feodorov, I. J. Permyakova. Proc. SPIE. The international Society for Optical Engineering. 5127, 246 (2002). Crossref
11. I. V. Ushakov. Proc. SPIE - The International Society for Optical Engineering. 6597, 659714 (2007). Crossref
12. Certificate of authorship SU 767616 A1, 30.09.1980. (in Russian) [Авт. свид. СССР SU 767616 A1, 30.09.1980.].
13. N. Osborne. M. Bergsten. Advanced Materials and Processes. 167 (2), 26 (2009).
14. M. A. Stremel’, A. B. Arabei, A. G. Glebov, I. Yu. Pyshmintsev, T. S. Esiev, A. I. Abakumov. Russian Metallurgy (Metally). 4, 411 (2018). Crossref
15. M.A. Shtremel. Laboratory practicum on course of “Metal Physics”. P. 1. Moscow, MISiS (1969) 81 p. (in Russian) [М.А. Штремель. Лабораторный практикум по спецкурсу «Прочность сплавов». Ч.1. Москва, МИСиС (1969) 81 с.].
16. GOST 1497-84. Metals. Methods for tensile tests (1984). (in Russian) [ГОСТ 1497-84. Металлы. Методы испытаний на растяжение (1984).].
17. M. A. Shtremel. Fracture. V. 1. Moscow, MISiS publ. (2015) 670 p. (in Russian) [М. А. Штремель. Разрушение. Том 1. Москва, МИСиС (2015) 670 с.].
18. M. L. Bernshtein, V. A. Zaymovskiy. Mechanical properties of metals. Moscow, Metallurgiya (1979) 495 p. (in Russian) [М. Л. Бернштейн, В. А. Займовский. Механические свойства металлов. Москва, Металлургия (1979) 495 с.].

Similar papers