Structural heterogeneities and electronic effects in self-organized core-shell type structures of Sb

T.V. Kulikova, L.A. Bityutskaya, A.V. Tuchin, E.V. Lisov, S.I. Nesterov, A.A. Averin, B.L. Agapov


The new type of core-shell structures of antimony ranging from 10-4 to 10-6 m, obtained in a single-stage process as a result of spontaneous crystallization of the melt at average cooling rates of the melt are 1 – 100 K/second. The structures consist of different forms of the same substance, whereas the core is represented by the mono-crystalline gray antimony and the shell is a deformed two-dimensional film.The paper provides morphological and electro-physical characteristics of the set of structures of the core-shell type of antimony ranging from 10-4 to 10-6 m, obtained in a single-stage process as a result of spontaneous crystallization of the melt. It verifies that the structures obtained can be considered as an example of the new type of core-shell structures in a series of self-organized structures derived from their layered precursor. The structures consist of different forms of the same substance, where the core is represented by mono-crystalline gray antimony and the shell is a deformed two-dimensional film. Based on the overall data obtained, the shell of the structure can be described as a cover film with a variable thickness, which contains structural heterogeneities in the form of antimony allotropes, i.e. defective antimonene nano-layers with a high proportion of boundary atoms and dangling bonds. Structural heterogeneity foster electronic effects such as: localized charge contrast, which occurs when an electron beam is applied; emerging of conductive and non-conducting areas on the surface of the shell; electrostatic interaction of particles; ability of the structures to accumulate an excess charge and retain it for a long time. The change in the properties of the nano-shell of the spheroidal structure of the core-shell type of antimony can be considered as a consequence of its deformed structure.

References (40)

R. Tenne, R. Rosentsveig, A. Zak. Phys. Status Solidi A. 210 (11), 2253 – 2258 (2013), DOI: 10.1002/pssa.201329309
C. N. R. Rao, M. Nath. Dalton Transactions. 1, 1 – 24 (2003), DOI: 10.1039/B208990B
G. Compagnini, M. G. Sinatra, G. C. Messina, G. Patane, S. Scalese, O. Puglisi. Applied Surface Science. 258 (15), 5672 – 5676 (2012), DOI:10.1016/j.apsusc.2012.02.053
R. Tenne. Frontiers of Physics 9 (3), 370 – 377 (2014), DOI:10.1007/s11467‑013‑0326‑8
B. Kalska-Szostko, U. Wykowska, D. Satuła. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 481, 527 – 536 (2015), DOI: 10.1016/j.colsurfa.2015.05.040
A. V. Nomoev, S. P. Bardakhanov, M. Schreibe, D. G. Bazarova, N. A. Romanov, B. B. Baldanov, B. R. Radnaev, V. V. Syzrantsev. Beilstein J. Nanotechnol. 6, 874 – 880 (2015), DOI:10.3762/bjnano.6.89
F. Weis, M. Seipenbusch, G. Kasper, Film Growth. Materials 8 (3), 966 – 976 (2015), DOI:10.3390/ma8030966
H. J. Choi, W. L. Zhang, S. Kim, Y. Seo. Materials 7 (11), 7460 – 7471 (2014), DOI:10.3390/ma7117460
R. G. Chaudhuri, S. Paria. Chem. Rev. 112 (4), 2373 – 2433 (2012), DOI: 10.1021/cr100449n
N. C. Norman. Chemistry of Arsenic, Antimony and Bismuth. Springer Science+Business Media B. V., Springer Netherlands. (1998) 484 p.
J. Donohue. The Structures of the Elements. John Wiley, New York. (1974) 436 p.
J. J. Zuckerman, A. P. Hagen. Inorganic Reactions and Methods, The Formation of Bonds to N, P, As, Sb, Bi. WILEY-VCH. (1988) 385 p.
C. Kamal, Motohiko Ezawa. Phys. Rev. B. 91, 085423 (2015), DOI: 10.1103/PhysRevB.91.085423
W. Xu, P. Lu, L. Wu, C. Yang, Y. Song, P. Guan, L. Han, S. Wang. IEEE Journal of Selected Topics in Quantum Electronics. 23 (1), 9000305 (2017), DOI: 10.1109/JSTQE.2016.2593106
A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, A. H. Castro Neto.Nature Reviews Materials. 1, 16061 (2016), DOI:10.1038/natrevmats.2016.61
A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, H. S. J van der Zant. 2D Materials. 1, 025001 (2014), DOI:10.1088/2053-1583/1/2/025001
S. Bagheri, N. Mansouri, E. Aghaie. International Journal of Hydrogen Energy. 41 (7), 4085 – 4095 (2016), DOI:10.1016/j.ijhydene.2016.01.034
O. Uzengi Akturk, V. Ongun Ozcelik, S. Ciraci.Physical Review B. 91, 235446 (2015), DOI: 10.1103/PhysRevB.91.235446
Y. Xu, B. Peng, H. Zhang, H. Shao, R. Zhang, H. Lu, D. Wei Zhang, H. Zhu. (2016), arXiv:1604.03422
C. Huo, X. Sun, Z. Yan, X. Song, S. Zhang, Z. Xie, J. Liu, J. Ji, L. Jiang, S. Zhou, H. Zeng. J. Am. Chem. Soc. 139 (9), 3568 – 3568 (2017), DOI: 10.1021/jacs.6b08698
P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, F. Zamora. Adv. Mater. 28 (30), 6332 – 6336 (2016), DOI: 10.1002/adma.201602128
S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng. Angew. Chem. Int. Ed. 54, 1 – 5 (2015), DOI: 10.1002/anie.201411246
P. Zhang, Z. Liu, W. Duan, F. Liu, J. Wu. Physical Review B. 85, 201410 (R) (2012), DOI: 10.1103/PhysRevB.85.201410
G. Bian, T. Miller, T.‑C. Chiang. Physical Review Letters PRL. 107, 036802 (2011), DOI: 10.1103/PhysRevLett.107.036802
S. H. Kim, K-H. Jin, J. Park, J. S. Kim, S-H. Jhi, H. W. Yeom. Scientific Reports. 6, 33193 (2016), DOI: 10.1038/srep33193
G. Yao, Z. Luo, F. Pan, W. Xu, Y. P. Feng, X-S. Wang. Scientific Reports. 3, 2010 (2013), DOI: 10.1038/srep02010
J. Liang, L. Cheng, J. Zhang, H. Liu. (2015), arXiv:1502.01610
Y. Nie, M. Rahman, D. Wang, C. Wang, G. Guo. Scientific Reports. 5, 17980 (2015), DOI: 10.1038/srep17980
S. Zhang, M. Xie, B. Cai, H. Zhang, Y. Ma, Z. Chen, Z. Zhu, Z. Hu, H. Zeng. Physical Review B. 93, 245303 (2016), DOI: 10.1103/PhysRevB.93.245303
K.‑H. Jin, S.‑H. Jhi. Scientific Reports. 5, 8426 (2015), DOI: 10.1038/srep08426
T. V. Kulikova, L. A. Bityutskaya, A. V. Tuchin, A. A. Averin. Journal of Advanced Materials. 3, 5 – 13 (2017). (in Russian) [Т. В. Куликова, Л. А. Битюцкая, А. В. Тучин, А. А. Аверин. Перспективные материалы. 3, 5 – 13 (2017)]
T. V. Kulikova, L. A. Bityutskaya. Condensed Matter and Interphases 18 (1), 61 – 66 (2016). (in Russian) [Т. В. Куликова, Л. А. Битюцкая. Конденсированные среды и межфазные границы. 18 (1), 61 – 66 (2016)]
J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. R. Michael. Scanning Electron Microscopy and X-ray Microanalysis. Springer US, New York. (2003) 689 p.
J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng. Nature Communications. 7, 13352 (2016), DOI: 10.1038/ncomms13352
N. Zhang, Y. Liu, Y. Lu, X. Han, F. Cheng, J. Chen. Nano Research. 8 (10), 3384 – 3393 (2015), DOI: 10.1007/s12274‑015‑0838‑3
T. Ramireddy, Md. Mokhlesur Rahman, T. Xing, Y. Chen, A. M. Glushenkov. J. Mater. Chem. A. 2, 4282 – 4291 (2014), DOI: 10.1039/c3ta14643j
H. Lv, S. Qiu, G. Lu, Y. Fu, X. Li, C. Hu, J. Liu. Electrochimica Acta. 151, 214 – 221 (2015), DOI: 10.1016/j.electacta.2014.11.013
G. Wang, R. Pandey, S. P. Karna. ACS Appl. Mater. Interfaces. 7 (21), 11490 – 11496 (2015), DOI: 10.1021/acsami.5b02441
A. A. Ashcheulov, O. N. Manyk, T. O. Manyk, S. F. Marenkinb, V. R. Bilynskiy-Slotylo. Inorganic Materials. 49 (8), 766 – 769 (2013), DOI: 10.1134/S0020168513070017
M. Zhao, X. Zhang, L. Li. Scientific Reports. 5, 16108 (2015), DOI: 10.1038/srep16108