STRUCTURAL-PHASE TRANSFORMATIONS IN THE ZIRCONIUM SINGLE CRYSTAL UNDER THE PRESSURE OF THE DEFORMATION

L. Egorova, Y. Khlebnikova, V. Pilyugin, E. Chernyshev show affiliations and emails
Received 04 August 2017; Accepted 23 October 2017;
This paper is written in Russian
Citation: L. Egorova, Y. Khlebnikova, V. Pilyugin, E. Chernyshev. STRUCTURAL-PHASE TRANSFORMATIONS IN THE ZIRCONIUM SINGLE CRYSTAL UNDER THE PRESSURE OF THE DEFORMATION. Lett. Mater., 2018, 8(1) 94-99
BibTex   https://doi.org/10.22226/2410-3535-2018-1-94-99

Abstract

At step of deformation from e = 0.5 to e = 4.6, the stage of nucleation of the ω phase is observed only in area of the α-phase, which have a favorable crystallographic orientation. The formation of groups of planar defects in the ω phase is a mechanism for the compensation of elastic stresses during lattice transformation α → ω under conditions of high quasihydrostatic pressure. The figure shows the dark-field image in the reflex (001)ω of the deformed structure at angle of anvil of Bridgman φ=15 grad (e=1.5) of pseudo-single crystal of zirconiumThe structural-phase transformation in pseudo-single crystal of zirconium during deformation on Bridgman anvils is studied by X-ray spectroscopy with synchrotron radiation. The angles of rotation in the Bridgman anvils turning varied from φ = 0 deg to φ = 45 deg. It was shown that the α-phase lattice is compressed at a true strain value e = 4.6, which is reflected in its parameters: the α-phase parameter "α" decreases by 5.3%, and the parameter "c" by 0.3%. On the contrary, the ω-phase arising in the process of deformation under pressure showed a tendency to stretching, if the parameter "a" of this phase practically does not change with an increase in the degree of deformation, then the parameter "c" is insignificant, by 0.14%, but increases. This behavior can probably be explained by the small atomic density and strong anisotropy in terms of the atomic density of the planes and series of the ω-phase. It is determined that the structure arising in the process of deformation of the baric ω-phase, deformation conditions from e = 0.5 to e = 4.6, does not undergo textural changes. At this step of deformation, only the stage of nucleation of the ω-phase is observed only in area of the α-phase, which have a favorable crystallographic orientation. The formation of groups of planar defects in the ω phase is a mechanism for the compensation of elastic stresses during lattice transformation α → ω under conditions of high quasihydrostatic pressure.

References (13)

1. N. Adachi, Yo. Todaka, H. Suzukib, M. Umemotoa. Scripta Materialia 98, 1 - 4 (2015). Crossref
2. B. Fenga, V. I. Levitas. Materials Science & Engineering A. 680, 130 - 140 (2017). Crossref
3. B. Srinivasarao, A. P. Zhilyaev, M. T. Pérez-Prado. Scripta Mater. 65 (3), 241 - 244 (2011). Crossref
4. B. Srinivasarao, A. P. Zhilyaev T. G. Langdon, M. T. Pérez-Prado. Materials Science & Engineering A. 562, 196 - 202 (2013). Crossref
5. X. Shen, P. F. Yu, Q. Jing, Y. Yao, L. Gu, Y. G. Wang, X. F. Duan, R. C. Yu and R. P. Liu. Scripta Materialia, 67, 653 - 656 (2012). Crossref
6. M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina, V. B. Vykhodets, L. S. Davydova, T. E. Kurennykh, A. M. Patselov, V. P. Pilyugin. The Phys. Metals Metallogr. 96 (6), 642 - 650 (2003).
7. A. I. Ancharov, A. Yu. Manakov, N. A. Mezentsev, B. P. Tolochko, M. A. Sheromov, V. M. Tsukanov. Nuclear Instruments and Methods in Physics Research Section A. 470, 80 - 83 (2001). Crossref
8. L. Yu. Egorova, Yu. V. Khlebnikova, V. P. Pilyugin. Letters on materials, 6, 237 - 242 (2016). (in Russian) [Егорова Л. Ю., Хлебникова Ю. В., Пилюгин В. П. Письма о материалах, 6, 237 - 242 (2016).]. Crossref
9. V. K. Grigorovich. Metal bond and the structure of metals. Moscow: Nauka (1988), 296 p. (in Russian) [Григорович В. К. Металлическая связь и структура металлов. М.: Наука (1988), 296 с.].
10. E. K. Cerreta, J. P. Escobedo, P. A. Rigg, C. P. Trujillo, D. W. Brown, T. A. Sisneros, B. Clausen, M. F. Lopez, T. Lookman, C. A. Bronkhorst, F. L. Addessio. Acta Materialia. 61, 7712 - 7719 (2013). Crossref
11. A. V. Dobromyslov, N. I. Taluts. The Phys. Metals Metallogr. 5, 108 - 115 (1990) (In Russian) [А. В. Добромыслов, Н. И. Талуц. ФММ, 5, 108 - 115 (1990)].
12. Y. L. Alshevsky, B. A. Kulnitsky, Y. S. Konyaev, M. P. Osipov. The Phys. Metals Metallogr. 58 (4), 795 - 803 (1984) (in Russian) [Альшевский Ю. Л., Кульницкий Б. А., Коняев Ю. С., Усиков М. П. ФММ, 58 (4), 795 - 803 (1984)].
13. V. V. Rybin. Large plastic deformation and destruction of metals. M.: Metallurgy (1986), 224 p. (in Russian) [Рыбин В. В. Большие пластические деформации и разрушение металлов. М.: Металлургия (1986), 224 с.].

Cited by (2)

1.
L. Yu. Egorova, Yu. V. Khlebnikova, V. P. Pilyugin, N. N. Resnina. Phys. Metals Metallogr. 123(5), 482 (2022). Crossref
2.
L.Yu. Egorova, Yu.V. Khlebnikova, Yu.V. Korkh, S.A. Maslova, V.P. Pilyugin, T.V. Kuznetsova. Materials Characterization. 211, 113876 (2024). Crossref

Similar papers