DISTRIBUTION OF INTERNAL STRESSES AND STORED ENERGY DENSITY INFO A GRAIN OF DEFORMED POLYCRYSTAL

S.F. Kiseleva, N.A. Popova, N.A. Koneva, E.V. Kozlov show affiliations and emails
Received 10 May 2012; Accepted 11 July 2012;
This paper is written in Russian
Citation: S.F. Kiseleva, N.A. Popova, N.A. Koneva, E.V. Kozlov. DISTRIBUTION OF INTERNAL STRESSES AND STORED ENERGY DENSITY INFO A GRAIN OF DEFORMED POLYCRYSTAL. Lett. Mater., 2012, 2(2) 84-89
BibTex   https://doi.org/10.22226/2410-3535-2012-2-84-89

Abstract

Internal stresses and stored energy density in local places into a grain of a polycrystal are determined. The electron microscopy method of determination of internal stresses and stored energy density for deformed material is used. In each case composite parts of elastic and plastic deformation or only plastic deformation are examined in a dependence from deformation nature. The determination of internal stresses are carried out with an use of bend extinction contours observed on electron microscopy images of deformed material foils. The results of a distribution of internal stresses and stored energy density into a grain on the example of the austenitic steel deformed by strain (ε = 25%).

References (10)

1. N.A. Koneva, L.I. Trishkina, E.V. Kozlov. Bulletin of theRussian Academy of Sciences: Physics 62(7), 1097 (1998).
2. N.A. Koneva, E.V. Kozlov. Structural-phase conditionsand properties of metallic systems. Ed. A. I. Potekaev.Tomsk: NTL Publisher (2004) 356p. (in Russian).
3. N.A. Koneva, L.I. Trishkina, E.V. Kozlov. Mater. Sci. Eng.A319-321, 156 (2001).
4. I.C. Umansky, B.N. Finkelstein, M.E. Blanter et al. Physicalmetallurgy. M.: State Scientific and Technical Publishingliterature on ferrous and nonferrous metallurgy, (1955)721p. (in Russian) [Уманский Я.С., ФинкельштейнБ.Н., Блантер М.Е. и др. Физическое металловедение.М.: Гос. Научно-техническое изд-во литературы почёрной и цветной металлургии (1955) 721с.].
5. R.W. Cahn, P. Haasen (eds). Physical metallurgy. Part 1and 2, North-Holland Physics Publishing, Amsterdam(1983) 2050 p. [Физическое металловедение. Том.3.Физико-механические свойства металлов и спла-вов. Под ред. Р.У. Кана и П. Хаазена. Пер. с англ. М.:Металлургия. 1987. 662с.].
6. C. S. Barrett, T. B. Massalski. Structure of Metals:crystallographic methods, principles and data. 3rd rev.ed. Oxford, New York: Pergamon (1980) 654 p.
7. E.V. Kozlov, D.B. Lychagin, N.A. Popova et al. Physicsof Strength of heterogeneous materials. Ed. by A.E.Romanov, L.: Ioffe Physical Technical Institute (1988)p. 3, (in Russian) [Козлов Э.В., Лычагин Д.В., ПоповаН.А. и др. Дальнодействующие поля напряжений иих роль в деформации структурно-неоднородныхматериалов. Физика прочности гетерогенных ма-териалов. Под ред. А.Е. Романова. Л.: ФТИ им. А.Ф.Иоффе (1988) p. 3].
8. N.A. Koneva, S.F. Kiseleva, N.A. Popova, E.V. Kozlov.Fundamental Problems and Modern Technologies ofMaterial Science 3, 34 (2011), (in Russian).
9. S.F. Kiseleva, N.A. Popova, N.A. Koneva, E.V. Kozlov.Fundamental Problems and Modern Technologies ofMaterial Science 1, 7 (2012), (in Russian) [КиселеваС.Ф., Попова Н.А., Конева Н.А., Козлов Э.В.Фундаментальные проблемы современного материа-ловедения 1, 7 (2012).
10. A.A. Smirnov. Molecular-Kinetic Theory of Metals, M.: Nauka (1966) 488 p. (in Russian) [Смирнов А.А.Молекулярно-кинетическая теория металлов, М.:Наука (1966) 488 с].

Cited by (2)

1.
I. Gibert, S. Kiseleva, N. Popova, N. Koneva, E. Kozlov. AMR. 1013, 133 (2014). Crossref
2.
M. Kraiev, K. Domina, V. Kraieva, Konstantin G. Zloshchastiev. Indian J Phys. 96(8), 2385 (2022). Crossref

Similar papers